8.命題“有些有理數(shù)是無限循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無限循環(huán)小數(shù)”是假命題,推理錯誤的原因是( 。
A.使用了歸納推理B.使用了類比推理
C.使用了“三段論”,但大前提錯誤D.使用了“三段論”,但小前提錯誤

分析 有理數(shù)包含有限小數(shù),無限不循環(huán)小數(shù),以及整數(shù),故有些有理數(shù)是無限循環(huán)小數(shù),這個說法是錯誤的,即大前提是錯誤的.

解答 解:大前提是特指命題,而小前提是全稱命題
有理數(shù)包含有限小數(shù),無限不循環(huán)小數(shù),以及整數(shù),
大前提是錯誤的,
∴得到的結(jié)論是錯誤的,
∴在以上三段論推理中,大前提錯誤
故選:C.

點評 本題考查演繹推理的基本方法,解題的關(guān)鍵是理解演繹推理的三段論原理,在大前提和小前提中,若有一個說法是錯誤的,則得到的結(jié)論就是錯誤的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等差數(shù)列{an}中,a1>0,前n項和為Sn,S6=S10,問S1,S2,S3,…,Sn中哪一個值最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知$f(x)=\frac{{{e^{ax}}}}{x}$(其中e=2.718…).
(1)若f(x)在(0,4]上是減函數(shù),求實數(shù)a的取值范圍;
(2)當(dāng)a=1時,求函數(shù)f(x)在[m,m+2](m>0)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=sin(ωx+φ)-cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$),其圖象相鄰的兩條對稱軸方程為x=0與x=$\frac{π}{2}$,則(  )
A.f(x)的最小正周期為2π,且在(0,π)上為單調(diào)遞增函數(shù)
B.f(x)的最小正周期為2π,且在(0,π)上為單調(diào)遞減函數(shù)
C.f(x)的最小正周期為π,且在(0,$\frac{π}{2}$)上為單調(diào)遞增函數(shù)
D.f(x)的最小正周期為π,且在(0,$\frac{π}{2}$)上為單調(diào)遞減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=-2sinx-cos2x.
(1)比較f($\frac{π}{4}$),f($\frac{π}{6}$)的大小;
(2)求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若直線ax+3y-2=0過點A(2,4),則a=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$是單位向量.
(1)若$\overrightarrow$∥$\overrightarrow{a}$,求$\overrightarrow$;
(2)若$\overrightarrow$⊥$\overrightarrow{a}$,求$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知x>1,y<0,且3y(1-x)=x+8,則x-3y的最小值是( 。
A.8B.6C.$\frac{15}{2}$D.$\frac{13}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知F1,F(xiàn)2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點,點A是橢圓的右頂點,O為坐標原點,若橢圓上的一點M滿足MF1⊥MF2,|MA|=|MO|,則橢圓的離心率為$\frac{2\sqrt{7}}{7}$.

查看答案和解析>>

同步練習(xí)冊答案