13.已知P是x2+y2-2x-2y+1=0上動(dòng)點(diǎn),PA、PB是圓(x-4)2+(y-5)2=4的切線,A,B為切點(diǎn),則∠APB的最大值為60°.

分析 求出圓的標(biāo)準(zhǔn)方程,作出對(duì)應(yīng)的圖象,利用兩點(diǎn)間的距離關(guān)系求出CP的距離,要求∠APB最大,等價(jià)為CP最小即可.

解答 解:圓x2+y2-2x-2y+1=0的標(biāo)準(zhǔn)方程為(x-1)2+(y-1)2=1,
圓心坐標(biāo)為D(1,1),半徑R=1,
圓(x-4)2+(y-5)2=4的圓心坐標(biāo)為C(4,5),半徑r=2,
若∠APB最大,則∠APC最大,即CP最小,
則由圖象知,CP的最小值為CD-DP=$\sqrt{(4-1)^{2}+(5-1)^{2}}$-1=$\sqrt{{3}^{2}+{4}^{2}}-1$=5-1=4,
此時(shí)sin∠APC=$\frac{AC}{CP}=\frac{2}{4}=\frac{1}{2}$,
則∠APC=30°,
即∠APB=2∠APC=60°,
故答案為:60°

點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系的應(yīng)用,利用數(shù)形結(jié)合將條件進(jìn)行等價(jià)轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=eπxsinπx,求f′(x)及f′($\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在數(shù)列{an}中,a1=1,數(shù)列{an+an+1}是以2為公差的等差數(shù)列,則a2017等于2017.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.為美化環(huán)境,某小區(qū)物業(yè)計(jì)劃在小區(qū)內(nèi)種植甲,乙,丙,丁四棵樹苗,受環(huán)境影響,甲,乙兩棵樹苗成活率均為$\frac{1}{2}$,丙,丁兩棵樹苗成活率均為a(0<a<1),每棵樹苗成活與否相互沒有影響.
(Ⅰ)若甲,乙兩棵樹苗中有且僅有一棵成活的概率與丙,丁兩棵樹苗都成活的概率相等,求a的值
(Ⅱ)設(shè)X為最終成活的樹苗的數(shù)量,求X的概率分布列及數(shù)學(xué)期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.為了得到函數(shù)$f(x)=2sin(2x-\frac{π}{6})$的圖象,可將函數(shù)g(x)=$\sqrt{3}$sin2x+cos2x的圖象( 。
A.向左平移$\frac{π}{3}$B.向右平移$\frac{π}{3}$C.向左平移$\frac{π}{6}$D.向右平移$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若點(diǎn)P是曲線y=x2-lnx上任意一點(diǎn),則點(diǎn)P到直線y=x-2的最小距離為( 。
A.$\frac{\sqrt{2}}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一個(gè)人騎車以6米/秒的速度勻速追趕停在交通信號(hào)燈前的汽車,當(dāng)他離汽車25米時(shí),交通信號(hào)燈由紅變綠,汽車開始做變速直線行駛(汽車與人的前進(jìn)方向相同),若汽車在時(shí)刻t的速度v(t)=t米/秒,那么此人(  )
A.可在7秒內(nèi)追上汽車
B.不能追上汽車,但其間最近距離為16米
C.不能追上汽車,但其間最近距離為14米
D.不能追上汽車,但其間最近距離為7米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知平面上的點(diǎn)集A及點(diǎn)P,在集合A內(nèi)任取一點(diǎn)Q,線段PQ長(zhǎng)度的最小值稱為點(diǎn)P到集合A的距離,記作d(P,A).如果集合A={(x,y)|x+y=1(0≤x≤1)},點(diǎn)P的坐標(biāo)為(2,0),那么d(P,A)=1;如果點(diǎn)集A所表示的圖形是邊長(zhǎng)為2的正三角形及其內(nèi)部,那么點(diǎn)集D={P|0<d(P,A)≤1}所表示的圖形的面積為6+π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=|2x-1|+|x-a|,a∈R.
(Ⅰ)當(dāng)a=3時(shí),解不等式f(x)≤4;
(Ⅱ)若f(x)=|x-1+a|,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案