19.計算:${C}_{3}^{3}$+${C}_{4}^{3}$+…+${C}_{10}^{3}$.

分析 利用${∁}_{n+1}^{m}$=${∁}_{n}^{m}+{∁}_{n}^{m-1}$即可得出.

解答 解:∵${∁}_{n+1}^{m}$=${∁}_{n}^{m}+{∁}_{n}^{m-1}$,
∴${C}_{3}^{3}$+${C}_{4}^{3}$+…+${C}_{10}^{3}$=${∁}_{5}^{4}+{∁}_{5}^{3}$+…+${∁}_{10}^{3}$
=${∁}_{10}^{4}+{∁}_{10}^{3}$
=${∁}_{11}^{4}$=330.

點評 本題考查了組合數(shù)的計算公式及其性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合Q={(x,y)|$\left\{\begin{array}{l}{y≤x}\\{y-1≥0}\\{x+y-4≤0}\end{array}\right.$},P={(x,y)|x2=2py,p>0},若P∩Q≠∅,則p的最小值為( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.記集合A={x|x-a>0},B={y|y=sinx,x∈R},若0∈A∩B,則a的取值范圍是( 。
A.(-∞,0)B.(-∞,0]C.[0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.“$θ=2kπ+\frac{π}{4}(k∈Z)$”是“tanθ=1”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.實數(shù)a,b,c,d滿足$\frac{{a}^{2}-2lna}$=1,c-$\frac{4}{3}$=$\frac{1}{3}$d,則(a-c)2+(b-d)2的最小值為( 。
A.$\frac{1}{10}$B.$\frac{2}{5}$ln2C.$\frac{2}{5}$(1-ln2)2D.$\frac{(9-2ln3)^{2}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.連續(xù)投擲兩次均勻的硬幣,用X表示正面朝上的次數(shù),求:
(1)P(X=1);
(2)P(X≤2);
(3)P(0≤X<2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=$\frac{{x{a^x}}}{|x|}$(0<a<1)的圖象的大致形狀是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若向量$\overrightarrow{a}$=(2,4)與向量$\overrightarrow$=(x,6)垂直,則實數(shù)x=( 。
A.12B.-12C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將函數(shù)f(x)=$\sqrt{3}$sin(ωx-$\frac{π}{3}$)的圖象分別向左和向右移動$\frac{π}{3}$之后的圖象的對稱中心重合,則正實數(shù)ω的最小值是( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案