20.若$\overrightarrow{e_1},\overrightarrow{e_2}$是兩個(gè)單位向量,且$\overrightarrow{e_1}•\overrightarrow{e_2}$=$\frac{1}{2}$,若$\overrightarrow a=2\overrightarrow{e_1}+\overrightarrow{e_2},\overrightarrow b=-3\overrightarrow{e_1}+2\overrightarrow{e_2}$,則向量$\overrightarrow a•\overrightarrow b$=-$\frac{7}{2}$.

分析 運(yùn)用向量數(shù)量積的性質(zhì):向量的平方即為模的平方,計(jì)算即可得到所求值.

解答 解:若$\overrightarrow a=2\overrightarrow{e_1}+\overrightarrow{e_2},\overrightarrow b=-3\overrightarrow{e_1}+2\overrightarrow{e_2}$,
則$\overrightarrow a•\overrightarrow b$=(2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)•(-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$)
=-6$\overrightarrow{{e}_{1}}$2+2$\overrightarrow{{e}_{2}}$2+$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$
=-6+2+$\frac{1}{2}$=-$\frac{7}{2}$,
故答案為:-$\frac{7}{2}$.

點(diǎn)評 本題考查向量數(shù)量積的坐標(biāo)運(yùn)算,考查向量的平方即為模的平方,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x<a}\\{{2}^{x},x≥a}\end{array}\right.$,若存在實(shí)數(shù)b,使函數(shù)g(x)=f(x)-b有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.(0,2)B.(2,+∞)C.(2,4)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在1L高產(chǎn)小麥種子中混入1粒帶麥銹病的種子,從中隨機(jī)取出20mL,則不含有麥銹病種子的概率為$\frac{49}{50}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.有下列說法其正確是( 。
A.0與{0}表示同一個(gè)集合
B.由1,2,3組成的集合可表示為{1,2,3}或{3,2,1}
C.方程(x-1)2(x-2)=0的所有解的集合可表示為{1,1,2}
D.集合{x|4<x<5}是有限集

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=b•ax,(其中a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過點(diǎn)A(1,6),B(3,24).
(1)求f(x)的解析式;
(2)求函數(shù)g(x)=$\frac{1}{3}$(f(x))2-f(x)+1,x∈[0,2]的值域;
(3)若不等式($\frac{1}{a}$)${\;}^{x}+(\frac{1})^{x}+2m-3≥0$在x∈(-∞,1]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.把sin$\frac{π}{12}$,sin$\frac{5}{12}π$,cos$\frac{5}{7}π$,tan$\frac{5}{12}π$由小到大排列為$cos\frac{5π}{7}$<$sin\frac{π}{12}$<$sin\frac{5}{12}π$<$tan\frac{5}{12}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=mx2-x+lnx.
(1)當(dāng)m=-1時(shí),求f(x)的極大值;
(2)若在函數(shù)f(x)的定義域內(nèi)存在區(qū)間D,使得該函數(shù)在區(qū)間D上為減函數(shù),求實(shí)數(shù)m的取值范圍;
(3)當(dāng)$0<m≤\frac{1}{2}$時(shí),若曲線C:y=f(x)在點(diǎn)x=1處的切線l與曲線C有且只有一個(gè)公共點(diǎn),求m的值或取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且對任意x∈R都有f(x)=f(x+4),當(dāng),x∈(0,2)時(shí),f(x)=2x,則f(2015)的值為( 。
A.-2B.-1C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足:a1+2a2+…+nan=2-$\frac{n+2}{2^n}$
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=log2$\frac{1}{2a_n^2},且{c_n}=\frac{b_n}{a_n}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案