11.在1L高產(chǎn)小麥種子中混入1粒帶麥銹病的種子,從中隨機(jī)取出20mL,則不含有麥銹病種子的概率為$\frac{49}{50}$.

分析 先計(jì)算出在1L高產(chǎn)小麥種子中隨機(jī)取出20mL,恰好含有麥銹病種子的概率,進(jìn)而根據(jù)對(duì)立事件概率減法公式,得到答案.

解答 解:在1L高產(chǎn)小麥種子中隨機(jī)取出20mL,
恰好含有麥銹病種子的概率P=$\frac{20}{1000}$=$\frac{1}{50}$,
故從中隨機(jī)取出20mL,不含有麥銹病種子的概率P=1-$\frac{1}{50}$=$\frac{49}{50}$;
故答案為:$\frac{49}{50}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是幾何概型,對(duì)立事件概率減法公式,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若x,y∈R,且$\left\{\begin{array}{l}x≥1\\ x-2y+3≥0\\ y≥x\end{array}\right.$,則z=x+2y的最大值等于9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)M(2,1),點(diǎn)N(x,y)滿足不等式組$\left\{\begin{array}{l}{x-2y+2≥0}\\{x+y-2≥0}\\{x≤4}\end{array}\right.$,則$\overrightarrow{OM}$•$\overrightarrow{ON}$的最大值為11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.執(zhí)行如圖所示的算法流程圖,則輸出的結(jié)果是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.下列事件是隨機(jī)事件的是①④(填序號(hào)).
①連續(xù)兩次擲一枚硬幣,兩次都出現(xiàn)正面向上;
②異性電荷相互吸引;
③在標(biāo)準(zhǔn)大氣壓下,水在1℃時(shí)結(jié)冰;
④任意擲一枚骰子朝上的點(diǎn)數(shù)是偶數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.我縣某中學(xué)為了配備高一新生中寄宿生的用品,招生前隨機(jī)抽取部分準(zhǔn)高一學(xué)生調(diào)查其上學(xué)路上所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中上學(xué)路上所需時(shí)間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方圖中x的值;
(2)如果上學(xué)路上所需時(shí)間不少于40分鐘的學(xué)生應(yīng)寄宿,且該校計(jì)劃招生1800名,請(qǐng)估計(jì)新生中應(yīng)有多少名學(xué)生寄宿;
(3)若不安排寄宿的話,請(qǐng)估計(jì)所有學(xué)生上學(xué)的平均耗時(shí)(用組中值代替各組數(shù)據(jù)的平均值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)點(diǎn)$P(m,\sqrt{2})$是角α終邊上一點(diǎn),若$cosα=\frac{{\sqrt{2}}}{2}$,則m=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若$\overrightarrow{e_1},\overrightarrow{e_2}$是兩個(gè)單位向量,且$\overrightarrow{e_1}•\overrightarrow{e_2}$=$\frac{1}{2}$,若$\overrightarrow a=2\overrightarrow{e_1}+\overrightarrow{e_2},\overrightarrow b=-3\overrightarrow{e_1}+2\overrightarrow{e_2}$,則向量$\overrightarrow a•\overrightarrow b$=-$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列能表示函數(shù)圖象的是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案