分析 以A為原點,DA為x軸,AB為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線AC與PB所成角的余弦值.
解答 解:如圖,以A為原點,DA為x軸,AB為y軸,AP為z軸,建立空間直角坐標(biāo)系,
由題意A(0,0,0),C(-1,$\sqrt{3}$,0),P(0,0,2),B(0,$\sqrt{3}$,0),
$\overrightarrow{AC}$=(-1,$\sqrt{3}$,0),$\overrightarrow{PB}$=(0,$\sqrt{3}$,-2),
設(shè)直線AC與PB所成角為θ,
∴cosθ=$\frac{|\overrightarrow{AC}•\overrightarrow{PB}|}{|\overrightarrow{AC}|•|\overrightarrow{PB}|}$=$\frac{|3|}{2×\sqrt{7}}$=$\frac{3\sqrt{7}}{14}$.
∴直線AC與PB所成角的余弦值為$\frac{3\sqrt{7}}{14}$.
點評 本題考查異面直線所成角的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意向量法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m | B. | m2+1 | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com