分析 (Ⅰ)由指數(shù)函數(shù)的性質(zhì)、一元二次不等式的解法求出A,由對(duì)數(shù)函數(shù)的性質(zhì)、分式不等式的解法求出B,由補(bǔ)集的運(yùn)算求出∁RB,由交集、并集的運(yùn)算分別求出A∩B,(∁RB)∪A;
(Ⅱ)根據(jù)題意和子集的定義列出不等式,求出實(shí)數(shù)a的取值范圍.
解答 解:(Ⅰ)解:由${(\frac{1}{2})}^{{x}^{2}-5x+6}≥\frac{1}{4}$得,x2-5x+6≤2,(2分)
即x2-5x+4≤0,解得1≤x≤4,則A={x|1≤x≤4}(4分)
由${log}_{2}\frac{x-3}{x-1}<1=lo{g}_{2}^{2}$得,$0<\frac{x-3}{x-1}<2$,(6分)
由$\frac{x-3}{x-1}>0$得(x-1)(x-3)>0,解得x<1或x>3,(7分)
由$\frac{x-3}{x-1}<2$得$\frac{-x-1}{x-1}<0$,則(-x-1)(x-1)<0,
即(x+1)(x-1)>0,解得x<-1或x>1,(8分)
所以B={x|x<-1或x>3},∁RB={x|-1≤x≤3},(9分)
所以A∩B={x|3<x≤4},(∁RB)∪A={x|-1≤x≤4};(10分)
(Ⅱ)解:由C⊆A、C≠∅得,$\left\{\begin{array}{l}{a-1≥1}\\{a≤4}\end{array}\right.$,(11分)
解得2≤a≤4,
∴實(shí)數(shù)a的取值范圍是[2,4](12分)
點(diǎn)評(píng) 本題考查交、并、補(bǔ)集的混合運(yùn)算,子集的定義,分式不等式和一元二次不等式的解法,以及指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用,考查轉(zhuǎn)化思想,化簡(jiǎn)、變形能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | $3\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
產(chǎn)品重量(克) | 頻數(shù) |
(490,495] | 6 |
(495,500] | 8 |
(500,505] | 14 |
(505,510] | 8 |
(510,515] | 4 |
甲流水線 | 乙流水線 | 合計(jì) | |
合格品 | a= | b= | |
不合格品 | c= | d= | |
合 計(jì) | n= |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -3 | C. | $-\frac{32}{9}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 0 | 1 | 3 | 4 |
y | 140 | 136 | 129 | 125 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com