13.雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1的漸近線與圓(x-3)2+y2=r2(r>0)相切,則r=( 。
A.2B.$\sqrt{3}$C.3D.6

分析 求得圓的圓心和半徑r,雙曲線的漸近線方程,運(yùn)用直線和圓相切的條件:d=r,計(jì)算即可得到所求值.

解答 解:圓(x-3)2+y2=r2的圓心為(3,0),半徑為r,
雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1的漸近線方程為y=±$\frac{2}{\sqrt{5}}$x,
由直線和圓相切的條件:d=r,
可得r=$\frac{\frac{6}{\sqrt{5}}}{\sqrt{1+\frac{4}{5}}}$=2.
故選:A.

點(diǎn)評(píng) 本題考查直線和圓相切的條件:d=r,同時(shí)考查雙曲線的漸近線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.身高互不相同的6個(gè)人排成2橫行3縱列,在第一行的每一個(gè)人都比他同列的身后的人個(gè)子矮,則所有排列數(shù)是( 。
A.15B.84C.90D.540

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦距是其一個(gè)焦點(diǎn)到一條漸近線距離的4倍,則該雙曲線的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.下面有四個(gè)命題:
①橢圓$\frac{{x}^{2}}{2}$+y2=1的短軸長(zhǎng)為1;    
②雙曲線$\frac{{x}^{2}}{2}$-y2=1的焦點(diǎn)在x軸上;
③設(shè)定點(diǎn)F1(0,-3)、F2(0,3),動(dòng)點(diǎn)P(x,y)滿足條件|PF1|+|PF2|=a(a>0),則動(dòng)點(diǎn)P的軌跡是橢圓;  
④拋物線y=8x2的焦點(diǎn)坐標(biāo)是(0,2).
其中真命題的序號(hào)為:②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.雙曲線kx2-y2=1的一條漸近線與直線2x-y+3=0垂直,則雙曲線的離心率是$\frac{{\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$為等軸曲線,過右焦點(diǎn)F作x軸的垂線交雙曲線與A,B兩點(diǎn),若|AB|=2$\sqrt{2}$,△OAB(O為坐標(biāo)原點(diǎn))的面積為( 。
A.2$\sqrt{2}$B.2$\sqrt{3}$C.4$\sqrt{2}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\sqrt{2}$,則直線l:y=$\frac{2016}{2015}$x與雙曲線C的交點(diǎn)個(gè)數(shù)為( 。
A.0B.2C.4D.以上都可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知點(diǎn)F是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左焦點(diǎn),點(diǎn)E是該雙曲線的右焦點(diǎn),過點(diǎn)F且垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),△ABE是直角三角形,則該雙曲線的離心率為1+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}x+1(x≤1)\\ \sqrt{x}(x>1).\end{array}\right.$若f(x)>f(x+1),則x的取值范圍是(0,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案