A. | 1 | B. | 2 | C. | 1.5 | D. | 2.5 |
分析 連結(jié)OC,過E作EF⊥OC于F,連接OE,由已知條件推導出四邊形CDEF是矩形,并求出DC和AD的長,由此利用勾股定理能求出BC的長
解答 解:連結(jié)OC,過E作EF⊥OC于F,連接OE,
∵AB為半圓O的直徑,AB=4,C為半圓上一點,
過點C作半圓的切線CD,過點A作AD⊥CD于D,
∴四邊形CDEF是矩形,
∵DE=1,
∴CF=DE=1,∴OF=OC-1=$\frac{1}{2}$AB-1=1,
∴CD=EF=$\sqrt{3}$,
∵CD2=DE•DA,∴DA=3,
∴AC2=CD2+AD2=12,
∴BC2=AB2-AC2=16-12=4,
∴BC=2.
故選:B.
點評 本題考查與圓有關(guān)的線段長的求法,解題時要注意切害割線定理和勾股定理的合理運用,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,+∞) | B. | (1,$\frac{\sqrt{6}}{2}$] | C. | [$\frac{\sqrt{6}}{2}$,+∞) | D. | (1,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{7}$ | B. | $\frac{{\sqrt{7}}}{7}$ | C. | 7 | D. | $\frac{1}{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com