6.若l,m是兩條不同的直線,m垂直于平面α,則“l(fā)⊥m”是“l(fā)∥α”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 利用直線與平面平行與垂直關(guān)系,判斷兩個(gè)命題的充要條件關(guān)系即可.

解答 解:l,m是兩條不同的直線,m垂直于平面α,則“l(fā)⊥m”可能“l(fā)∥α”也可能l?α,反之,“l(fā)∥α”一定有“l(fā)⊥m”,
所以l,m是兩條不同的直線,m垂直于平面α,則“l(fā)⊥m”是“l(fā)∥α”的必要而不充分條件.
故選:B.

點(diǎn)評(píng) 本題考查空間直線與平面垂直與平行關(guān)系的應(yīng)用,充要條件的判斷,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.“x=1”是“x2-2x+1=0”的( 。
A.充要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)A(0,-1),且離心率為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)經(jīng)過點(diǎn)(1,1),且斜率為k的直線與橢圓E交于不同的兩點(diǎn)P,Q(均異于點(diǎn)A),證明:直線AP與AQ斜率之和為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.等差數(shù)列{an}中,a2=4,a4+a7=15.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2${\;}^{{a}_{n}-2}$+n,求b1+b2+b3+…+b10的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)為奇函數(shù)的是( 。
A.y=$\sqrt{x}$B.y=|sinx|C.y=cosxD.y=ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若銳角△ABC的面積為$10\sqrt{3}$,且AB=5,AC=8,則BC等于7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)的圖象是由函數(shù)g(x)=cosx的圖象經(jīng)如下變換得到:先將g(x)圖象上所有點(diǎn)的縱坐標(biāo)伸長到原來的2倍,橫坐標(biāo)不變,再將所得到的圖象向右平移$\frac{π}{2}$個(gè)單位長度.
(1)求函數(shù)f(x)的解析式,并求其圖象的對(duì)稱軸方程;
(2)已知關(guān)于x的方程f(x)+g(x)=m在[0,2π)內(nèi)有兩個(gè)不同的解α,β
(i)求實(shí)數(shù)m的取值范圍;
(ii)證明:cos(α-β)=$\frac{2m^2}{5}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的各項(xiàng)均為正數(shù),bn=n(1+$\frac{1}{n}$)nan(n∈N+),e為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)f(x)=1+x-ex的單調(diào)區(qū)間,并比較(1+$\frac{1}{n}$)n與e的大小;
(2)計(jì)算$\frac{_{1}}{{a}_{1}}$,$\frac{_{1}_{2}}{{a}_{1}{a}_{2}}$,$\frac{_{1}{_{2}b}_{3}}{{a}_{1}{a}_{2}{a}_{3}}$,由此推測(cè)計(jì)算$\frac{_{1}_{2}…_{n}}{{a}_{1}{a}_{2}…{a}_{n}}$的公式,并給出證明;
(3)令cn=(a1a2…an)${\;}^{\frac{1}{n}}$,數(shù)列{an},{cn}的前n項(xiàng)和分別記為Sn,Tn,證明:Tn<eSn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,所有棱長都相等,若該三棱柱的頂點(diǎn)都在球O的表面上,且球O的表面積為7π,則三棱柱ABC-A1B1C1的體積為$\frac{9}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案