分析 (1)求出函數(shù)的導(dǎo)數(shù),求出切線的斜率,從而得到f′(2)=-$\frac{2}{3}$,解出即可;
(2)由(1)確定函數(shù)f(x)的解析式,再由f′(x)>0和f′(x)<0求得單調(diào)區(qū)間;
(3)由(2)得到函數(shù)的極值點(diǎn),求得極小值和極大值得答案.
解答 解:(1)∵f(x)=aln(1+x)+x2-10x在點(diǎn)(2,f(2))的切線與直線3x-2y-1=0垂直,
∴f(x)=aln(1+x)+x2-10x在點(diǎn)(2,f(2))的切線斜率為:k=$-\frac{2}{3}$…(1分)
又∵$f'(x)=\frac{a}{1+x}+2x-10$…(2分)
∴$f'(2)=\frac{a}{3}+4-10=-\frac{2}{3}$,解得a=16,
(2)由(1)知,f(x)=16ln(1+x)+x2-10x,x∈(-1,+∞),
$f'(x)=\frac{{2({{x^2}-4x+3})}}{1+x}=\frac{{2({x-1})({x-3})}}{1+x}$,
當(dāng)x∈(-1,1)∪(3,+∞)時(shí),f′(x)>0
當(dāng)x∈(1,3)時(shí),f′(x)<0
所以f(x)的單調(diào)增區(qū)間是(-1,1),(3,+∞)f(x)的單調(diào)減區(qū)間是(1,3)
(3)由(2)知,f(x)的極大值為f(1)=16ln2-9,極小值為f(3)=32ln2-21.
且當(dāng)x從右側(cè)無限接近于-1時(shí),f(x)趨于-∞,當(dāng)x無限大時(shí),f(x)趨于+∞,
∴若直線y=b與函數(shù)y=f(x)的圖象有3個(gè)交點(diǎn),則b的取值范圍是(32ln2-21,16ln2-9).
點(diǎn)評(píng) 此題重點(diǎn)考查利用求導(dǎo)研究函數(shù)的單調(diào)性,最值問題,函數(shù)根的問題;,熟悉函數(shù)的求導(dǎo)公式,理解求導(dǎo)在函數(shù)最值中的研究方法是解題的關(guān)鍵,數(shù)形結(jié)合理解函數(shù)的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{2}{3}$ | B. | $\frac{2}{3}$ | C. | -$\frac{3}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\sqrt{2},\frac{3π}{4})$ | B. | $({2,\frac{7π}{4}})$ | C. | $(2,\frac{5π}{4})$ | D. | $({2,\frac{3π}{4}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | -3 | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com