12.已知集合M={x|x2-x-2<0},N={x|a<x<b,x∈R,a,b∈R}.
(1)求集合M;
(2)若M?N,求a的最小值;
(3)若M∩N=M,求b的取值范圍.

分析 (1)解一元一次不等式即可求出集合M;
(2)根據(jù)M?N,得到a≥-1,即可求出答案;
(3)根據(jù)M∩N=M,得到M⊆N,即可求出b的范圍.

解答 解:(1)由x2-x-2<0,即為(x+1)(x-2)<0,解得-1<x<2,故M=(-1,2);
(2)由(1)知M=(-1,2),N={x|a<x<b,x∈R,a,b∈R}=(a,b),
∵M(jìn)?N,
∴a≥-1,
∴a的最小值為-1;
(3)∵M(jìn)∩N=M,
∴M⊆N,
∴$\left\{\begin{array}{l}{a≤-1}\\{a<b}\\{b≥2}\end{array}\right.$,
∴b的范圍為[2,+∞).

點(diǎn)評 本題考查了集合與集合的關(guān)系以及不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x+alnx,在x=1處的切線與直線x+2y=0垂直,函數(shù)g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
(1)求實(shí)數(shù)a的值;
(2)設(shè)x1,x2(x1<x2)是函數(shù)g(x)的兩個極值點(diǎn),記t=$\frac{x_1}{x_2}$,若b≥$\frac{13}{3}$,
①t的取值范圍;
②求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某中學(xué)舉行了一次“環(huán)保知識競賽”活動,為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出如圖所示的頻率分布直方圖,但由于不慎丟失了部分?jǐn)?shù)據(jù).已知得分在[50,60)的有8人,在[90,100)的有2人,由此推測頻率分布直方圖中的x=( 。
A.0.04B.0.03C.0.02D.0.01

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在△ABC中,已知CA=2,CB=3,∠ACB=60°.
(1)求$\overrightarrow{CA}$•$\overrightarrow{CB}$
 (2)若H為AB的中點(diǎn),試用向量知識求CH的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)=x2+3xf′(2),則1+f′(1)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知△ABC是邊長為2的等邊三角形,點(diǎn)D為BC邊的中點(diǎn),則$\overrightarrow{AB}•\overrightarrow{BD}$=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=lgx+2x-5的零點(diǎn)x0∈(k,k+1)(k∈Z),則k=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.不等式-6x2+2<x的解集是(-∞,-$\frac{2}{3}$)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在極坐標(biāo)系中,圓C:ρ=2與拋物線ρ=$\frac{1}{1-cosθ}$交于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

同步練習(xí)冊答案