7.已知函數(shù)f(x)=Asin(2x+φ)(A>0),其中角φ的終邊經(jīng)過點P(-l,1),且0<φ<π.則φ=$\frac{3π}{4}$,f(x)的單調(diào)減區(qū)間為[-$\frac{π}{8}$+kπ,$\frac{3π}{8}$+kπ](k∈Z).

分析 根據(jù)三角函數(shù)的定義求出cosφ,得出φ;得出f(x)的解析式,利用正弦函數(shù)的單調(diào)性列出不等式解出.

解答 解:OP=$\sqrt{2}$,∴cosφ=$\frac{-1}{\sqrt{2}}=-\frac{\sqrt{2}}{2}$.
∵0<φ<π,∴φ=$\frac{3π}{4}$.
f(x)=Asin(2x+$\frac{3π}{4}$)=-Asin(2x-$\frac{π}{4}$).
令-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,解得-$\frac{π}{8}$+kπ≤x≤$\frac{3π}{8}+kπ$.
∴(x)的單調(diào)減區(qū)間為[-$\frac{π}{8}$+kπ,$\frac{3π}{8}$+kπ](k∈Z).
故答案為$\frac{3π}{4}$,[-$\frac{π}{8}$+kπ,$\frac{3π}{8}$+kπ](k∈Z).

點評 本題考查了正弦函數(shù)的圖象與性質(zhì),屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知△ABC內(nèi)角A,B,C的對邊分別為a,b,c,且5sin2A+5sin2B-5sin2C+6sinAsinB=0,且ab=15.
(1)求cosC;
(2)求邊c的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.集合A={(x,y)||x|≤1,|y|≤1},B={(x,y)|(x-a)2+(y-a)2≤1},若集合A∩B=∅,則實數(shù)a的取值范圍是(-∞,-1-$\frac{\sqrt{2}}{2}$]]∪[1+$\frac{\sqrt{2}}{2}$,+∞)..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{0.5}x,x>0}\\{-{x}^{2}-4x,x<0}\end{array}\right.$,則f(f(-2))=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+3x,x<0\\ ln(x+1),x≥0\end{array}\right.$,若|f(x)|≥ax,則a的取值范圍是( 。
A.(-∞,0]B.(-∞,1]C.[-3,0]D.[-3,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知$z=\frac{2-i}{1+i}-{i^{2016}}$(i是虛數(shù)單位),則|z|=( 。
A.2B.4C.$\frac{{\sqrt{10}}}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若純虛數(shù)z滿足iz=1+ai,則實數(shù)a=(  )
A.0B.-1或1C.-1D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)=log($\sqrt{{x}^{2}+1}$+x)+$\frac{1}{{2}^{x}-1}$+1,則f(1)+f(-1)=1;如果f(loga5)=4(a>0,a≠1),那么f(${log}_{\frac{1}{a}}$5)的值是-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.執(zhí)行如圖所示程序圖,若N=7時,則輸出的結(jié)果S的值為(  )
A.$\frac{8}{7}$B.$\frac{6}{5}$C.$\frac{7}{8}$D.$\frac{5}{6}$

查看答案和解析>>

同步練習冊答案