2.已知x=3是函數(shù)f(x)=$\frac{{x}^{2}-mx}{{e}^{x}}$的一個極值點,則函數(shù)f(x)的單調(diào)增區(qū)間為( 。
A.(-∞,1),(3,+∞)B.($\frac{1}{2}$,3)C.(-∞,$\frac{1}{2}$),(3,+∞)D.(1,3)

分析 由題意可得f′(3)=0,解方程即求得m值,注意檢驗;在定義域內(nèi)解不等式f′(x)>0,可求單調(diào)增區(qū)間.

解答 解:∵f′(x)=-$\frac{{x}^{2}-(m+2)x+m}{{e}^{x}}$,x=3是極值點,
∴由f′(3)=0,解得:m=$\frac{3}{2}$,
∴f′(x)=-$\frac{{x}^{2}-\frac{7}{2}x+\frac{3}{2}}{{e}^{x}}$,
令f′(x)>0,解得:$\frac{1}{2}$<x<3,
∴f(x)在($\frac{1}{2}$,3)遞增,
故選:B.

點評 本題考查導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知F1,F(xiàn)2是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩個焦點,P為橢圓上任意一點,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$.若△PF1F2的面積為9,則b=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.把十進制數(shù)2016化為八進制數(shù)的末尾數(shù)字是(  )
A.0B.3C.4D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.拋物線x=-$\frac{1}{4}$y2的焦點坐標是(-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖已知梯形ABCD的直觀圖A′B′C′D′的面積為10,則梯形ABCD的面積為20$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.(x-2y)7的展開式中第四項的二項式系數(shù)是(  )
A.C${\;}_{7}^{4}$B.-8C${\;}_{7}^{3}$C.16C${\;}_{7}^{4}$D.C${\;}_{7}^{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知A2n4=120Cn2,則n的值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)M為橢圓$\frac{x^2}{25}$+$\frac{y^2}{9}$=1上的一個點,F(xiàn)1,F(xiàn)2為焦點,∠F1MF2=60°,則△MF1F2的周長和面積分別為(  )
A.16,$\sqrt{3}$B.18,$\sqrt{3}$C.16,$3\sqrt{3}$D.18,$3\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若△ABC中角A,B,C所對應(yīng)a,b,c滿足a2+b2-c2=ab=20,則△ABC面積為(  )
A.5$\sqrt{3}$B.5C.5$\sqrt{2}$D.10$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案