19.不等式$\frac{x-3}{x-1}$≤0的解集為(  )
A.{x|x<1或x≥3}B.{x|1≤x≤3}C.{x|1<x≤3}D.{x|1<x<3}

分析 將分式不等式轉(zhuǎn)化為整式不等式即可得到結(jié)論.

解答 解:不等式$\frac{x-3}{x-1}$≤0等價(jià)為$\left\{\begin{array}{l}{(x-3)(x-1)≤0}\\{x-1≠0}\end{array}\right.$,
即$\left\{\begin{array}{l}{1≤x≤3}\\{x≠1}\end{array}\right.$,
∴1<x≤3,
則不等式的解集為:{x|1<x≤3}.
故選:C.

點(diǎn)評(píng) 本題主要考查分式不等式的解法,將分式不等式轉(zhuǎn)化為整式不等式是解決本題的關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,矩形長(zhǎng)為5,寬為3,在矩形內(nèi)隨機(jī)撒100顆黃豆,數(shù)得落在橢圓內(nèi)的黃豆數(shù)為80顆,以此實(shí)驗(yàn)數(shù)據(jù)為依據(jù)可以估算橢圓的面積約為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知集合A={x∈R|ax2+2x+1=0,a∈R}中只有一個(gè)元素,求a的值并求出這個(gè)元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在△ABC中,$c=\sqrt{3}$,b=1,B=30°,則△ABC的面積為( 。
A.$\frac{{\sqrt{3}}}{2}或\sqrt{3}$B.$\frac{{\sqrt{3}}}{4}或\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{4}或\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=lg|x+1|.
(1)求函數(shù)f(x)的定義域;
(2)畫(huà)出函數(shù)圖象;
(3)寫(xiě)出函數(shù)單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.圓心為M(m,0)(m∈Z),半徑為5的圓與直線4x+3y-29=0相切.
(1)求圓M的方程;
(2)若直線l1:ax-y+5=0與圓M相交于A、B兩點(diǎn),是否存在實(shí)數(shù)a,c,使直線l2:4x+3y+c=0垂直平分弦AB?若存在,求直線l1、l2的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在平面幾何中,對(duì)于Rt△ABC,設(shè)BC=a,CA=b,AB=c,C=90°,則(1)a2+b2=c2;(2)cos2A+cos2B=1;(3)Rt△ABC的外接圓的半徑r=$\frac{1}{2}$$\sqrt{a^2+b^2}$;(4)S△ABC=$\frac{1}{2}$ab,把上面的結(jié)論類比到空間,寫(xiě)出相類似的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知sinα,cosα是方程5x2+x+m=0的兩根,α是第二象限角,求$\frac{sin(-α-\frac{3π}{2})+cos(\frac{3π}{2}-α)}{cos(\frac{π}{2}-α)•sin(\frac{π}{2}+α)}$•tan2(π-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知集合A={x||x-4|≤2,x∈R},B={x|$\frac{5-x}{x+1}$>0,x∈R},全集U=R.
(1)求A∩(∁UB);
(2)若集合C={x|x<a,x∈R},A∩C=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案