4.某單位有840名職工,現(xiàn)采用系統(tǒng)抽樣方法,抽取42人做問卷調(diào)查,將840人從1到840進行編號,求得間隔數(shù)k=$\frac{840}{42}$=20,即每20人抽取一個人,其中21號被抽到,則抽取的42人中,編號落入?yún)^(qū)間[421,720]的人數(shù)為( 。
A.12B.13C.14D.15

分析 根據(jù)系統(tǒng)抽樣方法,從840人中抽取42人,那么從20人抽取1人.從而得出從編號421~720共300人中抽取的人數(shù)即可.

解答 解:使用系統(tǒng)抽樣方法,從840人中抽取42人,即從20人抽取1人.
∴從編號421~720共300人中抽取$\frac{300}{20}$=15人.
故選:D.

點評 本題主要考查系統(tǒng)抽樣的定義和方法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.數(shù)列{an}各項均為正數(shù),其中a1=2,an+1是an與2an+an+1的等比中項.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{{a}_{n}}{({a}_{n}-1)({a}_{n+1}-1)}$.Tn為{bn}的前n項和,求使${T_n}>\frac{2015}{2016}$成立時n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=x2+ax-1,若方程f(x)=0的一個根大于1,另一個根小于1,則實數(shù)a的取值范圍是a<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=$\sqrt{2}$(sinωx+cosωx)(ω>0)對任意實數(shù)x都有f($\frac{π}{4}$+x)=f($\frac{π}{4}$-x),則f($\frac{π}{4}$)等于(  )
A.$\sqrt{2}$或0B.-2或2C.$\sqrt{2}$或-$\sqrt{2}$D.-$\sqrt{2}$或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某工廠的一個車間包裝一種產(chǎn)品,在一定的時間內(nèi),從自動包裝傳送帶上,每隔30min抽一包產(chǎn)品,稱其重量是否合格,記錄抽查產(chǎn)品的重量的莖葉圖如圖所示(以重量的個位數(shù)為葉),則抽查產(chǎn)品重量的中位數(shù)和眾數(shù)分別為( 。
A.96,98B.96,99C.98,98D.98,99

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=ln(x+$\sqrt{{x}^{2}+1}$)+ax7+bx3-4,其中a,b為常數(shù),若f(-3)=4,則f(3)=-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.定義域為R的函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}|x-1|,x≠1}\\{1,x=1}\end{array}\right.$,若關(guān)于x的方程f2(x)+bf(x)+c=0恰有3個不同的實數(shù)解x1,x2,x3,則f(x1+x2+x3)等于( 。
A.0B.1C.3lg2D.3log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知△ABC的周長等于20,面積等于10$\sqrt{3}$,a,b,c分別為△ABC內(nèi)角A,B,C的對邊,∠A=60°,則a為(  )
A.5B.7C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知某生產(chǎn)廠家的年利潤y(單位:萬元)與年產(chǎn)量x(單位:萬件)的函數(shù)關(guān)系式f(x)=-x2+18x-21,則使該生產(chǎn)廠家獲取最大年利潤的年產(chǎn)量為 (  )
A.8萬件B.18萬件C.36萬件D.60萬件

查看答案和解析>>

同步練習(xí)冊答案