分析 (1)根據(jù)題意求出函數(shù)f(x)的解析式,利用正弦函數(shù)的圖象性質(zhì)求出f(x)圖象的對(duì)稱軸方程以及相鄰兩條對(duì)稱軸間的距離d;
(2)由題意求出sinα、cosα和cosβ、sinβ的值,再計(jì)算cos(α+β)的值.
解答 解:(1)函數(shù)f(x)=2sin($\frac{x}{3}$-φ)的圖象經(jīng)過(guò)點(diǎn)(0,-1),
∴2sin(-φ)=-1,∴sinφ=$\frac{1}{2}$;
又0<φ<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$;
∴函數(shù)f(x)=2sin($\frac{x}{3}$-$\frac{π}{6}$);
令$\frac{x}{3}$-$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,
解得x=3kπ+2π,k∈Z,
∴f(x)圖象的對(duì)稱軸方程是x=3kπ+2π,k∈Z;
且相鄰兩條對(duì)稱軸間的距離d=(3π+2π)-2π=3π;
(2)由α、β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$)=2sinα=$\frac{10}{13}$,
∴sinα=$\frac{5}{13}$,cosα=$\frac{12}{13}$;
f(3β+2π)=2sin(β+$\frac{π}{2}$)=2cosβ=$\frac{6}{5}$,
∴cosβ=$\frac{3}{5}$,sinβ=$\frac{4}{5}$;
∴cos(α+β)=cosαcosβ-sinαsinβ=$\frac{12}{13}$×$\frac{3}{5}$-$\frac{5}{13}$×$\frac{4}{5}$=$\frac{16}{65}$.
點(diǎn)評(píng) 本題考查了正弦函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,也考查了同角的三角函數(shù)關(guān)系與兩角和的余弦公式應(yīng)用問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{x}$ | B. | -x$\sqrt{-x}$ | C. | x$\sqrt{x}$ | D. | x$\sqrt{-x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3+i | B. | -1+3i | C. | -3-i | D. | -1-3i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | -1 | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $-\frac{π}{6}$ | D. | $-\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30種 | B. | 24種 | C. | 15種 | D. | 12種 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com