分析 原式可以寫成:$\frac{1}{2}$[(x+1)+2y]•($\frac{1}{x+1}$+$\frac{1}{y}$),展開后再用基本不等式求最值即口.
解答 解:∵x+2y=1,∴x+1+2y=2,
由于x>-1,y>0,所以x+1>0,2y>0,
原式=$\frac{1}{x+1}$+$\frac{1}{y}$=1•($\frac{1}{x+1}$+$\frac{1}{y}$)
=$\frac{1}{2}$[(x+1)+2y]•($\frac{1}{x+1}$+$\frac{1}{y}$)
=$\frac{1}{2}$(1+2+$\frac{2y}{x+1}$+$\frac{x+1}{y}$)
≥$\frac{1}{2}$(3+2$\sqrt{\frac{2y}{x+1}•\frac{x+1}{y}}$)
=$\frac{3+2\sqrt{2}}{2}$,
當且僅當:x+1=$\sqrt{2}$y時,取“=”
即原式的最小值為:$\frac{3+2\sqrt{2}}{2}$.
點評 本題主要考查運用基本不等式求最值,以及取等條件的分析和確定,并運用了貼“1”法,體現了整體思想,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [-2,3] | B. | [-2,3) | C. | (1,2] | D. | [1,2) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com