3.已知拋物線y2=4x,過(guò)其焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),過(guò)A,B分別作y軸的垂線,垂足分別為C,D,則|AC|+|BD|的最小值為( 。
A.4B.3C.2D.1

分析 求得拋物線的焦點(diǎn)和準(zhǔn)線方程,由拋物線的定義,可得|AC|+|BD|=|AF|+|BF|-2=|AB|-2,求得|AB|的最小值即可.

解答 解:拋物線y2=4x的焦點(diǎn)F(1,0),準(zhǔn)線方程為x=-1,
由拋物線的定義可得,|AF|=|AC|+1,|BF|=|BD|+1,
即有|AC|+|BD|=|AF|+|BF|-2
=|AB|-2,
當(dāng)直線AB⊥x軸時(shí),|AB|最小.
令x=1,則y2=4,解得y=±2,
即有|AB|min=4,
則|AC|+|BD|的最小值為2.
故選:C.

點(diǎn)評(píng) 本題考查拋物線的定義、方程和性質(zhì),主要考查定義法及運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖,矩形ABCD中,AB=2,BC=4,點(diǎn)E、G分別為BC、DC中點(diǎn),點(diǎn)F為EC中點(diǎn),則矩形去掉陰影部分后,以BC為軸旋轉(zhuǎn)一周所得的幾何體的體積是$\frac{29π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.某食堂規(guī)定,每份午餐可以在四種水果中任選兩種,則甲、乙兩同學(xué)各自所選的兩種水果相同的概率為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.隨機(jī)將1,2,…,2n(n∈N*,n≥2)這2n個(gè)連續(xù)正整數(shù)分成A,B兩組,每組n個(gè)數(shù),A組最小數(shù)為a1,最大數(shù)為a2;B組最小數(shù)為b1,最大數(shù)為b2,記ξ=a2-a1,η=b2-b1
(1)當(dāng)n=3時(shí),求ξ的分布列和數(shù)學(xué)期望;
(2)令C表示事件“ξ與η的取值恰好相等”,事件C發(fā)生的概率為p(C).
①當(dāng)n=2時(shí),求p(C);
②當(dāng)n∈N*,n>2時(shí),求p(C).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為菱形,且∠BAD=60°,Q,M分別為PA,BC的中點(diǎn).
(1)證明:直線QM∥平面PCD;
(2)若二面角A-BD-Q所成角正切值為2,求直線QC與平面PAD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(Ⅰ)已知c>0,關(guān)于x的不等式:x+|x-2c|≥2的解集為R.
求實(shí)數(shù)c的取值范圍;
(Ⅱ)若c的最小值為m,又p、q、r是正實(shí)數(shù),且滿足p+q+r=3m,求證:p2+q2+r2≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.己知曲線C:$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),A、B是曲線C上兩點(diǎn),O為坐標(biāo)原點(diǎn),$\overrightarrow{OA}$•$\overrightarrow{OB}$=0
(1)求證:$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$為定值.
(2)求$\overrightarrow{|AB|}$的最小值,并以直角坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,在此極坐標(biāo)系中,求AB所在直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知圓的漸開線的參數(shù)方程是$\left\{\begin{array}{l}{x=cosφ+φsinφ}\\{y=sinφ-φcosφ}\end{array}\right.$(φ為參數(shù)),則此漸開線對(duì)應(yīng)的基圓的直徑是2,當(dāng)參數(shù)φ=$\frac{π}{2}$時(shí),對(duì)應(yīng)的曲線上的點(diǎn)的坐標(biāo)為($\frac{π}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求證:$\frac{1}{2}$<$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<1(n>1,n∈N*

查看答案和解析>>

同步練習(xí)冊(cè)答案