3.函數(shù)f(x)=$\frac{{x}^{5}+sinx}{x}$的導(dǎo)數(shù)是$\frac{4{x}^{5}+cosx-sinx}{{x}^{2}}$.

分析 根據(jù)導(dǎo)數(shù)的運算法則求導(dǎo),即可.

解答 解:f(x)=$\frac{{x}^{5}+sinx}{x}$,
∴f′(x)=($\frac{{x}^{5}+sinx}{x}$)′=$\frac{x(5{x}^{4}+cosx)-({x}^{5}+sinx)}{{x}^{2}}$=$\frac{4{x}^{5}+cosx-sinx}{{x}^{2}}$,
故答案為:=$\frac{4{x}^{5}+cosx-sinx}{{x}^{2}}$.

點評 本題考查了導(dǎo)數(shù)的運算法則,關(guān)鍵是掌握基本導(dǎo)數(shù)的公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某學(xué)校有教師132人,職工33人,學(xué)生1485人.為了解食堂情況,擬采用分層抽樣的方法從以上人員中抽取50人進行抽查,則在學(xué)生中應(yīng)抽取45 人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.執(zhí)行如圖的程序框圖,若p=7,則輸出的s=$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖是一個幾何體的三視圖,則這個幾何體的體積是( 。
A.$\frac{7}{3}π$B.$\frac{10}{3}π$C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=x-$\frac{1}{x}$-alnx.
(1)若曲線y=f(x)在點(1,f(1))處的切線與圓x2+y2=$\frac{1}{2}$,求a的值;
(2)當(dāng)a∈[0,2]時,函數(shù)g(x)=x-lnx-$\frac{1}{e}$,若在[1,e]上至少存在一根x0,使得f(x0)≥g(x0),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知b2+4c2=8,sinB+2sinC=6bsinAsinC,則△ABC的面積取最大值時有a2=$\frac{15-8\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)是定義在R上的任意一個函數(shù),請以f(x)和f(-x)為基礎(chǔ)構(gòu)造函數(shù)F(x):
(1)使F(x)為偶函數(shù);
(2)使F(x)為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知cosα=-2sinα,求下列各式的值.
(1)$\frac{2sinα-cosα}{sinα+3cosα}$;
(2)sin2α+2sinαcosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)f(x)=$\left\{\begin{array}{l}{-2,-1≤x<0}\\{3x-2,x≥0}\end{array}\right.$
(1)寫出函數(shù)的定義域;
(2)求f(-$\frac{1}{2}$)與f(3)的值.

查看答案和解析>>

同步練習(xí)冊答案