分析 (1)由題意,利用導(dǎo)函數(shù)的幾何含義及切點(diǎn)的實(shí)質(zhì)建立a,b的方程,然后求解即可;
(2)由題意,若對(duì)于區(qū)間[-2,2]上任意自變量的x0,都有|f(x0)|≤c,可以轉(zhuǎn)化為求函數(shù)在定義域下的最值即可得解.
解答 解:(1)f′(x)=3ax2+2bx-3.
根據(jù)題意,得$\left\{\begin{array}{l}{f(1)=-2}\\{f′(1)=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{a+b-3=-2}\\{3a+2b-3=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=1}\\{b=0}\end{array}\right.$,
所以f(x)=x3-3x;
(2)令f′(x)=0,即3x2-3=0.得x=±1.
當(dāng)x∈(-∞,-1)時(shí),f′(x)>0,函數(shù)f(x)在此區(qū)間單調(diào)遞增;
當(dāng)x∈(-1,1)時(shí),f′(x)<0,函數(shù)f(x)在此區(qū)間單調(diào)遞減.
因?yàn)閒(-1)=2,f(1)=-2,
所以當(dāng)x∈[-2,2]時(shí),f(x)max=2,f(x)min=-2.
若對(duì)于區(qū)間[-2,2]上任意自變量的x0,都有|f(x0)|≤c,所以c≥2.
所以c的最小值為2.
點(diǎn)評(píng) 此題重點(diǎn)考查了導(dǎo)數(shù)的幾何含義及函數(shù)切點(diǎn)的定義,還考查了數(shù)學(xué)中重要的方程的思想,考查了數(shù)學(xué)中等價(jià)轉(zhuǎn)化的思想把題意總轉(zhuǎn)化為求函數(shù)在定義域下的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 12 | C. | $\frac{2}{9}$ | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com