分析 (1)通過S5=70且a1,a7,a37成等比數(shù)列,計算即得結(jié)論;
(2)通過(1)可得${S_n}=2{n^2}+4n$,分離分母可得$\frac{1}{{S}_{n}}$=$\frac{1}{4}({\frac{1}{n}-\frac{1}{n+2}})$,并項相加得Tn=$\frac{3}{8}-\frac{1}{4}({\frac{1}{n+1}+\frac{1}{n+2}})$,進而可得${T_n}<\frac{3}{8}$、數(shù)列{Tn}是遞增數(shù)列,即得結(jié)論.
解答 (1)解:∵數(shù)列{an}是等差數(shù)列,
∴an=a1+(n-1)d,${S_n}=n{a_1}+\frac{{n({n-1})}}{2}d$,
依題意,有$\left\{\begin{array}{l}{S_5}=70\\{a_7}^2={a_1}{a_{37}}.\end{array}\right.$,即$\left\{\begin{array}{l}5{a_1}+10d=70\\{({{a_1}+6d})^2}={a_1}({{a_1}+35d}).\end{array}\right.$,
解得a1=6,d=4,
∴數(shù)列{an}的通項公式為an=4n+2(n∈N*);
(2)證明:由(1)可得${S_n}=2{n^2}+4n$,
∴$\frac{1}{S_n}=\frac{1}{{2{n^2}+4n}}=\frac{1}{{2n({n+2})}}$=$\frac{1}{4}({\frac{1}{n}-\frac{1}{n+2}})$,
∴${T_n}=\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{{{S_{n-1}}}}+\frac{1}{S_n}$
=$\frac{1}{4}({1-\frac{1}{3}})+\frac{1}{4}({\frac{1}{2}-\frac{1}{4}})+\frac{1}{4}({\frac{1}{3}-\frac{1}{5}})+…+\frac{1}{4}({\frac{1}{n-1}-\frac{1}{n+1}})+\frac{1}{4}({\frac{1}{n}-\frac{1}{n+2}})$
=$\frac{1}{4}({1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}})$
=$\frac{3}{8}-\frac{1}{4}({\frac{1}{n+1}+\frac{1}{n+2}})$,
∵${T_n}-\frac{3}{8}=-\frac{1}{4}({\frac{1}{n+1}+\frac{1}{n+2}})<0$,∴${T_n}<\frac{3}{8}$,
∵${T_{n+1}}-{T_n}=\frac{1}{4}({\frac{1}{n+1}-\frac{1}{n+3}})>0$,
∴數(shù)列{Tn}是遞增數(shù)列,
∴${T_n}≥{T_1}=\frac{1}{6}$,
∴$\frac{1}{6}≤{T_n}<\frac{3}{8}$.
點評 本題考查求數(shù)列的通項及判斷和的取值范圍,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{15}$ | B. | $2\sqrt{15}$ | C. | $±\sqrt{15}$ | D. | $±2\sqrt{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | ±$\sqrt{10}$ | C. | $\sqrt{10}$ | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com