分析 (1)利用等差數(shù)列通項(xiàng)公式列出方程組,求出首項(xiàng)、公差,由此能求出{an}的通項(xiàng)公式,由數(shù)列{bn}的前n項(xiàng)和Sn=2bn-2,得{bn}是首項(xiàng)為2,公比為2的等比數(shù)列,由此能求出{bn}的通項(xiàng)公式.
(2)由cn=$\frac{{a}_{n}}{_{n}}$=$\frac{n}{{2}^{n}}$,利用錯(cuò)位相減法能求出數(shù)列{cn}的前n項(xiàng)和.
解答 解:(1)∵數(shù)列{an}為等差數(shù)列,a3=3,a7=7,設(shè)公差為d.
∴$\left\{\begin{array}{l}{{a}_{1}+2d=3}\\{{a}_{1}+6d=7}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=1}\end{array}\right.$,
∴an=1+(n-1)×1=n,n∈N*.
∵數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=2bn-2,
∴b1=S1=2b1-2,解得b1=2,
當(dāng)n≥2時(shí),由Sn=2bn-2及Sn-1=2bn-1-2,
兩式相減,得bn=2bn-2bn-1,∴bn=2bn-1,
∴{bn}是首項(xiàng)為2,公比為2的等比數(shù)列,
∴bn=2•2n-1=2n.(n∈N*).
(2)∵cn=$\frac{{a}_{n}}{_{n}}$=$\frac{n}{{2}^{n}}$,
∴數(shù)列{cn}的前n項(xiàng)和:
Tn=$\frac{1}{2}+\frac{2}{{2}^{2}}+…+\frac{n}{{2}^{n}}$,①
$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}+…+\frac{n}{{2}^{n+1}}$,②
①-②,得:$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$
=1-$\frac{n+2}{{2}^{n+1}}$,
∴Tn=2-$\frac{n+2}{{2}^{n}}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式及前n項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意錯(cuò)位相減法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{15}{2}$ | B. | $\frac{13}{2}$ | C. | $\frac{31}{2}$ | D. | $\frac{51}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{13}}{4}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | -$\frac{\sqrt{3}}{4}$ | D. | -$\frac{\sqrt{13}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[0,0.5) | 4 | 0.10 |
[0.5,1) | m | p |
[1,1.5) | 10 | n |
[1.5,2) | 6 | 0.15 |
[2,2.5) | 4 | 0.10 |
[2.5,3) | 2 | 0.05 |
合計(jì) | M | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com