13.設(shè)正整數(shù)數(shù)列{an}滿足a2=4,且對(duì)?n∈N*有:an(2an+1+1)<n(n+1)(an+an+1)<an+1(2an+1)
(1)求a1,a3;
(2)猜想{an}的通項(xiàng)公式,并證明你的結(jié)論.

分析 (1)由條件可令n=1,2,代入,化簡(jiǎn)整理,結(jié)合an為正整數(shù),計(jì)算即可得到所求;
(2)猜想:an=n2(n∈N*).運(yùn)用數(shù)學(xué)歸納法證明,注意由n=k命題成立,證明n=k+1也成立,運(yùn)用解不等式,化簡(jiǎn)整理可得$\frac{{k}^{2}}{{k}^{3}+1}$•(k+1)2<ak+1<(k+1)2+$\frac{1}{k-1}$,即可得證.

解答 解:(1)對(duì)?n∈N*有:an(2an+1+1)<n(n+1)(an+an+1)<an+1(2an+1),
當(dāng)n=1時(shí),a1(2a2+1)<2(a1+a2)<a2(2a1+1),
由a2=4,可得9a1<2(a1+4)<4(2a1+1),
即有$\frac{2}{3}$<a1<$\frac{8}{7}$,可得a1=1;
同理可得,當(dāng)n=2時(shí),有8<a3<10,
可得a3=9;
(2)猜想:an=n2(n∈N*).
下面用數(shù)學(xué)歸納法證明:
當(dāng)n=1時(shí),由(1)可得a1=1成立;
假設(shè)n=k(k∈N*),有ak=k2
當(dāng)n=k+1時(shí),由ak(2ak+1+1)<k(k+1)(ak+ak+1)<ak+1(2ak+1),
即2k2ak+1+k2<k(k+1)(k2+ak+1)<ak+1(2k2+1),
當(dāng)k=1時(shí),上式顯然成立;
則k>1時(shí),可得$\frac{{k}^{2}(k+1)}{{k}^{2}-k+1}$<ak+1<$\frac{k({k}^{2}+k-1)}{k-1}$,
即有$\frac{{k}^{2}}{{k}^{3}+1}$•(k+1)2<ak+1<(k+1)2+$\frac{1}{k-1}$,
由0<$\frac{{k}^{2}}{{k}^{3}+1}$<1,$\frac{1}{k-1}$>0,
可得ak+1=(k+1)2,
則n=k+1時(shí),ak+1=(k+1)2也成立.
綜上可得,an=n2對(duì)?n∈N*都成立.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,注意運(yùn)用猜想和數(shù)學(xué)歸納法證明,考查化簡(jiǎn)整理和推理能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.下列說(shuō)法:
①將一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程y=3-5x,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;
③某小組有3名男生和2名女生,從中任選2名同學(xué)去參加演講比賽;事件“至少1名女生”與事件“全是男生”是對(duì)立事件;
④第二象限的角都是鈍角.
以上說(shuō)法正確的序號(hào)是①③(填上所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若不等式x2-2ax-b2+12≤0恰有一解,則ab的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,角A、B、C所對(duì)邊分別為a、b、c,若asinB=3bsinAcosC,則cos(π-C)=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在數(shù)列{an}中,已知a1=1,且an+1=an+n,n∈N*,則a9的值為37.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC中,若a:b:c=1:2:$\sqrt{6}$,則最大角的余弦值等于(  )
A.$\frac{1}{5}$B.$\frac{5}{9}$C.-$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.比較下列各組中兩個(gè)代數(shù)式的大小,寫(xiě)出比較過(guò)程.
(Ⅰ)$\sqrt{11}$+$\sqrt{3}$與$\sqrt{9}$+$\sqrt{5}$;
(Ⅱ)x2+5x+16與2x2-x-11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知F為拋物線y2=ax(a>0)的焦點(diǎn),M點(diǎn)的坐標(biāo)為(4,0),過(guò)點(diǎn)F作斜率為k1的直線與拋物線交于A,B兩點(diǎn),延長(zhǎng)AM,BM交拋物線于C,D兩點(diǎn),設(shè)直線CD的斜率為k2,且k1=$\sqrt{2}$k2,則a=( 。
A.8B.8$\sqrt{2}$C.16D.16$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,在邊長(zhǎng)為4的正方形內(nèi)有一個(gè)橢圓,張明同學(xué)用隨機(jī)模擬的方法求橢圓的面積,若在正方形內(nèi)隨機(jī)產(chǎn)生10000個(gè)點(diǎn),并記錄落在橢圓區(qū)域內(nèi)的點(diǎn)的個(gè)數(shù)有4000個(gè),則橢圓區(qū)域的面積約為( 。
A.5.6B.6.4C.7.2D.8.1

查看答案和解析>>

同步練習(xí)冊(cè)答案