分析 取AB中點F,連接DF,EF,則AC∥DF,∠EDF就是異面直線AC與DE所成的角(或所成角的補角),由此能求出異面直線AC與ED所成的角的大。
解答 解:取AB中點F,連接DF,EF,則AC∥DF,
∴∠EDF就是異面直線AC與DE所成的角(或所成角的補角).
設(shè)AP=BC=2,
∵PA⊥平面ABC,AC⊥AB,AP=BC,∠CBA=30°,D、E分別是BC、AP的中點,
∴由已知,AC=EA=AD=1,AB=$\sqrt{3}$,PB=$\sqrt{7}$,EF=$\frac{\sqrt{7}}{2}$,
∵AC⊥EF,∴DF⊥EF.
在Rt△EFD中,DF=$\frac{1}{2}AC=\frac{1}{2}$,DE=$\sqrt{2}$,
∴cos∠EDF=$\frac{D{E}^{2}+D{F}^{2}-E{F}^{2}}{2×DE×DF}$=$\frac{2+\frac{1}{4}-\frac{7}{4}}{2×\sqrt{2}×\frac{1}{2}}$=$\frac{\sqrt{2}}{4}$,
∴異面直線AC與ED所成的角為arccos$\frac{\sqrt{2}}{4}$.
故答案為:arccos$\frac{\sqrt{2}}{4}$.
點評 本題考查異面直線所成角的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{3}$$,\frac{1}{3}$,$\frac{1}{3}$) | B. | ($\frac{2}{3}$,$\frac{2}{3}$,$\frac{2}{3}$) | C. | ($\frac{5}{6}$,$\frac{5}{6}$,$\frac{1}{6}$) | D. | ($\frac{2}{3}$,$\frac{2}{3}$,$\frac{1}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{{5\sqrt{6}}}{18}$ | B. | -$\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{6}}}{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com