7.在平面直角坐標(biāo)系xOy中,已知△ABC的頂點(diǎn)B(-5,0)和C(5,0),頂點(diǎn)A在雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的右支上,則$\frac{sinC-sinB}{sinA}$=$\frac{3}{5}$?.

分析 首先由正弦定理,有$\frac{sinC-sinB}{sinA}$=$\frac{AB-AC}{BC}$,進(jìn)而根據(jù)雙曲線的幾何性質(zhì),可得|CB|=2c=4,|AB|-|CA|=2a=6,代入$\frac{AB-AC}{BC}$,即可得到答案.

解答 解:根據(jù)正弦定理:在△ABC中,有$\frac{sinC-sinB}{sinA}$=$\frac{AB-AC}{BC}$,
又由題意C、B分別是雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的左、右焦點(diǎn),
則|CB|=2c=10,
且△ABC的頂點(diǎn)A在雙曲線的右支上,
又可得|AB|-|AC|=2a=6,
則$\frac{sinC-sinB}{sinA}$=$\frac{AB-AC}{BC}$=$\frac{6}{10}$=$\frac{3}{5}$.
故答案為:$\frac{3}{5}$.

點(diǎn)評 本題考查雙曲線的定義、方程和性質(zhì),注意運(yùn)用定義法,以及正弦定理的應(yīng)用,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知全集為R,集合A={x|$\frac{x-1}{x}$<0},B={x|x≥1},則A∪B等于( 。
A.{x|x>0}B.{x|0<x<1}C.{x|x<1}D.{x|x≤0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定義A⊕B={Z|z=xy(x+y),x∈A,y∈B},若A={x|x2-x=0},B={x|x2-3x+2=0}則A?B的子集個(gè)數(shù)為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.用1,2,3,4這四個(gè)數(shù)字組成比2000大,且百位數(shù)不是1的無重復(fù)數(shù)字的四位數(shù)有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,△ABC是等腰直角三角形,AB=AC,∠BCD=90°,且BC=$\sqrt{3}$CD=3.將△ABC沿BC的邊翻折,設(shè)點(diǎn)A在平面BCD上的射影為點(diǎn)M,若點(diǎn)M在△BCD內(nèi)部(含邊界),則點(diǎn)M的軌跡的最大長度等于$\frac{\sqrt{3}}{2}$;在翻折過程中,當(dāng)點(diǎn)M位于線段BD上時(shí),直線AB和CD所成的角的余弦值等于$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一條漸近線與拋物線y2=2px(p>0)的準(zhǔn)線的交點(diǎn)坐標(biāo)為$(-\frac{4}{3},\frac{8}{3})$,且雙曲線與拋物線的一個(gè)公共點(diǎn)M的坐標(biāo)(x0,4),則雙曲線的方程為$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知A,B為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)右支上兩點(diǎn),O為坐標(biāo)原點(diǎn),若△OAB是邊長為c的等邊三角形,且c2=a2+b2,則雙曲線C的漸近線方程為y=±x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=3x-($\frac{1}{2}$)x的零點(diǎn)存在區(qū)間為( 。
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=5,S4=16.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=3${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

同步練習(xí)冊答案