18.計算:tan5°tan55°tan65°tan75°.

分析 可直接使用正切三倍角公式tan3θ=tanθtan(60-θ)tan(60+θ)求解.

解答 解:∵tan3θ=tanθtan(60-θ)tan(60+θ).
∴tan5°tan55°tan65°tan75°
=tan5°tan(60°-5°)tan(60°+5°)cot15°
=tan15°cot15°
=1.

點評 本題考查三角函數(shù)值的求法,是基礎題,解題時要認真審題,注意正切三倍角公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸長是焦距的2倍,點(-1,-$\frac{3}{2}$)在橢圓C上,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點.
(1)求橢圓C的方程;
(2)設P是橢圓C上的動點,直線PF1,PF2交橢圓C于A,B兩點,$\overrightarrow{{F}_{1}A}$=λ$\overrightarrow{P{F}_{1}}$,$\overrightarrow{{F}_{2}B}$=μ$\overrightarrow{P{F}_{2}}$,求λ+μ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.等差數(shù)列{an}中,前三項分別為x,2x,5x-4,前n項和為Sn,且Sk=110,求x和k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知拋物線E:y2=2px(p>0)上一點M(x0,4)到交點F的距離|MF|=$\frac{5}{4}$x0
(1)求E的方程;
(2)過F的直線l與E相交于A、B兩點,AB的垂直平分線l′與E相較于C、D兩點,若$\overrightarrow{AC}$•$\overrightarrow{AD}$=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設A={x|2a≤x≤a+3},B={x|x<-1或x>5},求a在什么條件下滿足:
(1)A∩B=∅;
(2)A∩B=A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若兩平行直線2x+y-4=0與y=-2x-m-2間的距離不大于$\sqrt{5}$,則m的取值范圍是( 。
A.[-11,-1]B.[-11,0]C.[-11,-6]∪(-6,-1]D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知三棱柱ABC-A1B1C1,CB⊥平面BAA1B1,且四邊形BAA1B1是正方形,M,N分別是AA1,BC的中點.
(I)求證:AB1⊥CA1;
(Ⅱ)求證:AN∥平面MB1C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{3}$cos($\frac{π}{2}$-x)cos(2π-x)-cos2x.
(1)求函數(shù)f(x)的單凋遞增區(qū)間;
(2)若θ∈[0,$\frac{π}{2}$],f($\frac{θ}{2}$+$\frac{π}{3}$)=$\frac{3}{10}$,求tan(θ+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知2012sin2α=sin2012°,求$\frac{tan(α+1006°)+tan(α-1006°)}{tan(α+1006°)-tan(α-1006°)}$的值.

查看答案和解析>>

同步練習冊答案