11.已知直線l1:3x+my-1=0,直線l2:(m+2)x-(m-2)y+2=0,且l1∥l2,則m的值為1或-6.

分析 根據(jù)直線平行的等價(jià)條件進(jìn)行求解即可得到結(jié)論.

解答 解:若l1∥l2,
則m(m+2)+3(m-2)=0,
解得:m=1或-6,
故答案為:1或-6.

點(diǎn)評(píng) 本題主要考查直線平行的應(yīng)用,根據(jù)直線系數(shù)之間的比例關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知△ABC的頂點(diǎn)為A(1,1),B(3,1),C(2,$\sqrt{3}$+1),驗(yàn)證:△ABC為等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在△ABC中,AB=4,BC=6$\sqrt{2}$,∠CBA=$\frac{π}{4}$,.若雙曲線Γ以AB為實(shí)軸,且過(guò)點(diǎn)C,則Γ的焦距為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在Rt△ABC中,∠BCA=90°,P為邊AB上的一點(diǎn),$\overrightarrow{AP}=λ\overrightarrow{PB}$.
(Ⅰ)若λ=3,試用$\overrightarrow{CA}$,$\overrightarrow{CB}$表示$\overrightarrow{CP}$;
(Ⅱ)若|$\overrightarrow{CA}$|=4,|$\overrightarrow{CB}$|=3,且$\overrightarrow{CP}$•$\overrightarrow{AB}$=-6,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.計(jì)算下列各式的值:
(1)$\root{3}{(-8)^{3}}$•($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$+8${\;}^{\frac{2}{3}}$•125${\;}^{\frac{1}{3}}$;
(2)log23•log34+(log53+log5$\frac{1}{3}$)+(log35-log315).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)集合A={f(x)|存在互不相等的正整數(shù)m,n,k,使得[f(n)]2=f(m)f(k)成立},則下列不屬于集合A的函數(shù)是( 。
A.f(x)=1+x${\;}^{\frac{1}{3}}$B.f(x)=1+lgxC.f(x)=1+2xD.f(x)=1+cos$\frac{π}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=x2-ax+b(a,b∈R)
(Ⅰ)若函數(shù)f(x)在[0,1]上不單調(diào),求a的取值范圍
(Ⅱ)對(duì)任意x∈[-1,1],都存在y∈R,使得f(y)=f(x)+y成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知拋物線C:y2=12x的焦點(diǎn)為F,準(zhǔn)線為l,P為l上一點(diǎn),Q是直線PF與拋物線的一個(gè)交點(diǎn),若2$\overrightarrow{FP}$+3$\overrightarrow{FQ}$=$\overrightarrow{0}$,則$\overrightarrow{|QF|}$=( 。
A.5B.$\frac{15}{2}$C.10D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知點(diǎn)A(m,-2,n),點(diǎn)B(-5,6,24)和向量$\overrightarrow a=(-3,4,12)$且$\overrightarrow{AB}$∥$\overrightarrow a$.則點(diǎn)A的坐標(biāo)為(1,-2,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案