6.計(jì)算下列各式的值:
(1)$\root{3}{(-8)^{3}}$•($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$+8${\;}^{\frac{2}{3}}$•125${\;}^{\frac{1}{3}}$;
(2)log23•log34+(log53+log5$\frac{1}{3}$)+(log35-log315).

分析 分別指數(shù)冪運(yùn)算法則和對數(shù)的運(yùn)算法則計(jì)算即可.

解答 解:(1)$\root{3}{(-8)^{3}}$•($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$+8${\;}^{\frac{2}{3}}$•125${\;}^{\frac{1}{3}}$=-8•$(\frac{2}{3})^{4×(-\frac{3}{4})}$+${2}^{3×\frac{2}{3}}$•${5}^{3×\frac{1}{3}}$=-27+20=-7
(2)log23•log34+(log53+log5$\frac{1}{3}$)+(log35-log315)=$\frac{lg3}{lg2}$•$\frac{lg4}{lg3}$+log5(3×$\frac{1}{3}$)+log3$\frac{5}{15}$=2+0-1=1.

點(diǎn)評 本題考查了指數(shù)冪運(yùn)算法則和對數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2-lnx-1,求f(x)的單調(diào)區(qū)間,且指出函數(shù)f(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.定義在[-2,2]上的偶函數(shù)f(x)在[-2,0]上是減函數(shù),若f(x+1)<f(2x),則實(shí)數(shù)x的取值范圍是-1≤x<-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知0<a<1,且函數(shù)y=ax與y=logax的圖象的交點(diǎn)的橫坐標(biāo)為x0
(1)求sin2x0的取值范圍;
(2)是否存在實(shí)數(shù)t,當(dāng)0<x<x0,不等式5tax+(4-3t)logax>0恒成立?若存在,求t的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.對a,b∈R,記min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,函數(shù)f(x)=min{-|x|,-x2+4x+6}的最大值是( 。
A.6B.1C.0D.$\frac{3-\sqrt{33}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知直線l1:3x+my-1=0,直線l2:(m+2)x-(m-2)y+2=0,且l1∥l2,則m的值為1或-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知a=log23,則4a=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知某海港的貨運(yùn)碼頭只能停泊一艘貨輪,甲、乙兩艘貨輪都要在此碼頭停靠6小時(shí),假定它們在一晝夜的時(shí)間段中隨機(jī)到達(dá),求這兩艘貨輪中有一艘貨輪停泊在此碼頭,另一艘貨輪等待的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.寫出命題:“對任意實(shí)數(shù)m,關(guān)于x的方程x2+x+m=0有實(shí)根”的否定為存在實(shí)數(shù)m,關(guān)于x的方程x2+x+m=0沒有實(shí)數(shù)根.

查看答案和解析>>

同步練習(xí)冊答案