16.設(shè)集合A={f(x)|存在互不相等的正整數(shù)m,n,k,使得[f(n)]2=f(m)f(k)成立},則下列不屬于集合A的函數(shù)是( 。
A.f(x)=1+x${\;}^{\frac{1}{3}}$B.f(x)=1+lgxC.f(x)=1+2xD.f(x)=1+cos$\frac{π}{3}$x

分析 根據(jù)條件分別確定n,m,k的值即可得到結(jié)論.

解答 解:A.∵f(1)=2,f(27)=4,f(343)=8,∴滿足[f(27)]2=f(1)f(343).
B.∵f(1)=1,f(10)=2,f(1000)=4,∴滿足[f(10)]2=f(1)f(1000).
D..∵f($\frac{3}{2}$)=1,f($\frac{9}{2}$)=1,f($\frac{15}{2}$)=4,∴滿足[f($\frac{9}{2}$)]2=f($\frac{3}{2}$)f($\frac{15}{2}$).
故只有C不滿足條件.
故選:C.

點評 本題主要考查函數(shù)值的計算,根據(jù)條件找出滿足條件的n,m,k是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果實數(shù)x、y滿足x2+(y-3)2=1,那么$\frac{y}{x}$的取值范圍是( 。
A.[2$\sqrt{2}$,+∞)B.(-∞,-2$\sqrt{2}$]C.[-2$\sqrt{2}$,2$\sqrt{2}$]D.(-∞,-2$\sqrt{2}$]∪[2$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知兩條直線l1:y=a和l2:y=$\frac{18}{2a+1}$(其中a>0),若直線l1與函數(shù)y=|log4x|的圖象從左到右相交于點A,B,直線l2與函數(shù)y=|log4x|的圖象從左到右相交于點C,D.記線段AC和BD在x軸上的投影長度分別為 m,n.令f(a)=log4$\frac{n}{m}$.
(1)求f(a)的表達式;
(2)當(dāng)a變化時,求出f(a)的最小值,并指出取得最小值時對應(yīng)的a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知空間中有兩點,P1(2,-2,0),P2(2,1,-4),則兩點P1,P2之間的距離為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知直線l1:3x+my-1=0,直線l2:(m+2)x-(m-2)y+2=0,且l1∥l2,則m的值為1或-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{6cos(π+x)+5si{n}^{2}(-x)-4}{cos(2π-x)}$
(Ⅰ)求f($\frac{π}{3}$)的值
(Ⅱ)若f(m)=2,試求f(-m)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知圓${O_1}:{x^2}+{({y-1})^2}=4$,圓${O_2}:{x^2}+{y^2}-2x+4y-4=0$,則圓O1和圓O2的位置關(guān)系是( 。
A.相交B.相離C.外切D.內(nèi)含

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合$A=\left\{{\left.x\right|\frac{1}{x}>1}\right\},B=\left\{{\left.x\right|y=\sqrt{{2^x}-16}}\right\}$,則A∩(∁RB)等于(  )
A.(-∞,1)B.(0,4)C.(0,1)D.(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列關(guān)系式中正確的是( 。
A.0∈∅B.0∉{x|x<1}C.{0}=∅D.{0}⊆{x|x<1}

查看答案和解析>>

同步練習(xí)冊答案