給出如下四個(gè)命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③命題“對(duì)任意的x∈R,x2+1≥1”的否定是“存在x∈R,x2+1<1”;
④在△ABC中,“A>B”是“cosA<cosB”的充要條件,其中不正確的命題的個(gè)數(shù)是( 。
A、4B、3C、2D、1
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡(jiǎn)易邏輯
分析:①利用“且命題”的意義即可判斷出;
②利用命題的否命題定義即可得出;
③利用全稱命題的否定是特稱命題即可得出;
④在△ABC中,0<A<B<π,由余弦函數(shù)在(0,π)上單調(diào)遞減,即可判斷出.
解答: 解:①若“p且q”為假命題,則p、q至少有一個(gè)為假命題,因此①不正確;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”,正確;
③命題“對(duì)任意的x∈R,x2+1≥1”的否定是“存在x∈R,x2+1<1”,正確;
④在△ABC中,0<A<B<π,由余弦函數(shù)在(0,π)上單調(diào)遞減,∴“cosA<cosB”?A<B.
∴在△ABC中,“A>B”是“cosA<cosB”的充要條件,正確.
綜上可知:不正確的命題的個(gè)數(shù)是1.
故選:D.
點(diǎn)評(píng):本題考查了簡(jiǎn)易邏輯的有關(guān)知識(shí)、三角函數(shù)的和差化積及其正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,已知AB=10,AC=14,B=
π
3
,D是BC邊上的一點(diǎn),DC=6.
(Ⅰ)求∠ADB的值;
(Ⅱ)求sin∠DAC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB是⊙O的直徑,弦BD、CA的延長(zhǎng)線相交于點(diǎn)E,EF垂直BA的延長(zhǎng)線于點(diǎn)F.求證.
(Ⅰ)∠DEA=∠DFA;
(Ⅱ)AB2=BE•BD-AE•AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

i是虛數(shù)單位,i(-1+2i)=( 。
A、i+2B、i-2
C、-2-iD、2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={x∈Z|1≤x≤5},A={1,2,3},∁UB={1,2},則A∩B( 。
A、{1,2}
B、{1,3}
C、{3}
D、{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
100
+
y2
25
=1的上頂點(diǎn)為A,直線y=-4交橢圓E于點(diǎn)B,C(點(diǎn)B在點(diǎn)C的左側(cè)),點(diǎn)P在橢圓E上.
(Ⅰ)求以原點(diǎn)為頂點(diǎn),橢圓的右焦點(diǎn)為焦點(diǎn)的拋物線的方程;
(Ⅱ)若四邊形ABCD為梯形,求點(diǎn)P的坐標(biāo);
(Ⅲ)若
BP
=m•
BA
+n•
BC
(m,n為實(shí)數(shù)),求m+n的最大值及對(duì)應(yīng)的P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,以原點(diǎn)O為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線x-y+
6
=0相切.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線L:y=kx+m與橢圓C相交于A、B兩點(diǎn),且kOA•kOB=-
b2
a2
,求證:△AOB的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的焦距為2,且過(guò)點(diǎn)(1,
2
2
),右焦點(diǎn)為F2.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線段AB的中點(diǎn)M的橫坐標(biāo)為-
1
2
,線段AB的中垂線交橢圓C于P,Q兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)求
F2P
F2Q
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知雙曲線x2-y2=a2(其中a>0).
(1)若定點(diǎn)A(4,0)到雙曲線上的點(diǎn)的最近距離為
5
,求a的值;
(2)若過(guò)雙曲線的左焦點(diǎn)F1,作傾斜角為α的直線l交雙曲線于M、N兩點(diǎn),其中α∈(
π
4
4
),F(xiàn)2是雙曲線的右焦點(diǎn).求△F2MN的面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案