分析 不妨設橢圓的標準方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),a2=b2+c2.利用已知可得a-c=5,a+c=15,解出即可得出.
解答 解:不妨設橢圓的標準方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),a2=b2+c2.
∵橢圓上的點到焦點的距離的最小值為5,最大值為15,
∴a-c=5,a+c=15,
∴b2=a2-c2=5×15=75.
∴b=5$\sqrt{3}$.
則橢圓的短軸長為10$\sqrt{3}$.
故答案為:10$\sqrt{3}$.
點評 本題考查了橢圓的標準方程及其性質,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=$±\frac{\sqrt{3}}{3}$x | B. | y=$±\sqrt{3}$x | C. | y=±x | D. | y=±2x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 75% | B. | 25% | C. | 15% | D. | 40% |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 0 | C. | 18 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-3]∪[2,+∞) | B. | [-1,2] | C. | [-2,1] | D. | [2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com