6.一個(gè)棱長為2cm的正方體的頂點(diǎn)都在球面上,則該球的表面積是12πcm2

分析 設(shè)出正方體的棱長,求出正方體的體對角線的長,就是球的直徑,求出球的表面積即可.

解答 解:正方體的棱長為:2cm,正方體的體對角線的長為:2$\sqrt{3}$cm,就是球的直徑,
∴球的表面積為:S2=4π($\sqrt{3}$)2=12πcm2
故答案為:12πcm2

點(diǎn)評 本題考查球的體積和表面積,正方體的外接球的知識,仔細(xì)分析,找出二者之間的關(guān)系:正方體的對角線就是球的直徑,是解題關(guān)鍵,本題考查轉(zhuǎn)化思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=x4-x2有( 。
A.極小值-$\frac{1}{4}$,極大值0B.極小值0,極大值-$\frac{1}{4}$
C.極小值$\frac{1}{4}$,極大值0D.極小值0,極大值$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知tan(x+$\frac{π}{4}$)=2,則$\frac{tanx}{tan2x}$的值為( 。
A.$\frac{4}{9}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知A={1,2,3},B={x∈N||x|=3},那么A∩B=( 。
A.3B.-3C.{-3,1,2,3}D.{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=$\sqrt{1-x}$+log3x的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,1]B.(0,1]C.(0,1)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=x2-b|x|+c,g(x)=kx+c-2(k>0),函數(shù)h(x)=f(x)-g(x),若f(-4)=f(0),f(-2)=-2,則當(dāng)函數(shù)h(x)的零點(diǎn)個(gè)數(shù)為2時(shí),k的取值范圍為( 。
A.$(2\sqrt{2},+∞)$B.$(4-2\sqrt{2},+∞)$C.(4,+∞)D.$(4+2\sqrt{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.用數(shù)學(xué)歸納法證明:12+22+32+…+n2+…+22+12=$\frac{n(2{n}^{2}+1)}{3}$,第二步證明由n=k到n=k+1時(shí),左邊應(yīng)加( 。
A.k2B.(k+1)2C.k2+(k+1)2+k2D.(k+1)2+k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=lnx+tanα(0<α<$\frac{π}{2}$)的導(dǎo)函數(shù)為f'(x),若方程f'(x)=f(x)的根x0小于1,則α的取值范圍為( 。
A.$(\frac{π}{4},\frac{π}{2})$B.$(0,\frac{π}{3})$C.$(\frac{π}{6},\frac{π}{4})$D.$(0,\frac{π}{4})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.己知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-ax,x>0}\\{{2}^{x}-1,x≤0}\end{array}\right.$,若不等式f(x)+1≥0在x∈R上恒成立,則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,0]B.[-2,2]C.(-∞,2]D.[0,2]

查看答案和解析>>

同步練習(xí)冊答案