7.函數(shù)f(x)=x+lnx-2零點(diǎn)所在區(qū)間為(  )
A.(0,1)B.(e,e2C.(1,e)D.$(\frac{1}{2},1)$

分析 利用根的存在性定理進(jìn)行判斷區(qū)間端點(diǎn)處的符合即可.

解答 解:因?yàn)閒(1)=1+ln1-2=-1<0,f(e)=e+lne-2=e-1>0,
所以根據(jù)根的存在性定理可知在區(qū)間(1,e)內(nèi)函數(shù)存在零點(diǎn).
故選C.

點(diǎn)評(píng) 本題主要考查函數(shù)零點(diǎn)的判斷,利用根的存在性定理是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)=sin(x+$\frac{π}{6}$)的一個(gè)遞減區(qū)間是(  )
A.[-$\frac{π}{2}$,$\frac{π}{2}$]B.[-π,0]C.[-$\frac{2}{3}π$,$\frac{2}{3}π$]D.[$\frac{π}{2}$,$\frac{2}{3}π$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.求函數(shù)y=$\sqrt{sin2x}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知點(diǎn)P為正方體ABCD-A1B1C1D1的棱D1D上的一點(diǎn),當(dāng)點(diǎn)P在線段D1D上移動(dòng)時(shí),直線A1B1與平面ABP的位置關(guān)系是平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知A={-2,2010,x2-1},B={0,2010,x2-3x},且A=B,則x的值為(  )
A.1B.0C.-1D.-1,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若關(guān)于x的不等式x2-2ax-a2≤0的解集為A,且[0,1]⊆A,則a的取值范圍是{a|$a≥\sqrt{2}-1或a≤-\sqrt{2}-1$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=2x+log2x,g(x)=2xlog2x+1,h(x)=2xlog2x-1的零點(diǎn)分別為a,b,c,則 a,b,c的大小關(guān)系為( 。
A.a<b<cB.c<b<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.滿足不等式組$\left\{{\begin{array}{l}{3x-2y-2>0}\\{x+4y+4>0}\\{2x+y-6<0}\end{array}}\right.$任意一點(diǎn)(x,y)都使不等式x+y+m≥0恒成立,則實(shí)數(shù)m的取值范圍為( 。
A.(1,+∞)B.[1,+∞)C.[-2,+∞)D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.過(guò)橢圓4x2+2y2=1的一個(gè)焦點(diǎn)F1的弦AB與另一個(gè)焦點(diǎn)F2所圍成的△ABF2的周長(zhǎng)是$2\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案