A. | $(0{,_{\;}}\frac{1}{2})∪(\frac{2}{3}{,_{\;}}1)∪(1{,_{\;}}+∞)$ | B. | $(-∞{,_{\;}}\frac{1}{2})∪(\frac{2}{3}{,_{\;}}+∞)$ | ||
C. | $(\frac{1}{2}{,_{\;}}\frac{2}{3})$ | D. | $(0{,_{\;}}\frac{1}{2})∪(\frac{2}{3}{,_{\;}}1)∪(1{,_{\;}}\frac{3}{2})$ |
分析 要使函數(shù)$f(x)={log_x}(6{x^2}-7x+2)$有意義,則應(yīng)滿足$\left\{\begin{array}{l}{6{x}^{2}-7x+2>0}\\{x>0}\\{x≠1}\end{array}\right.$,解不等式組即可得到函數(shù)的定義域.
解答 解:要使函數(shù)$f(x)={log_x}(6{x^2}-7x+2)$有意義,
則$\left\{\begin{array}{l}{6{x}^{2}-7x+2>0}\\{x>0}\\{x≠1}\end{array}\right.$,
解得:$0<x<\frac{1}{2}$或$x>\frac{2}{3}$且x≠1.
故函數(shù)$f(x)={log_x}(6{x^2}-7x+2)$的定義域是:(0,$\frac{1}{2}$)∪($\frac{2}{3}$,1)∪(1,+∞).
故選:A.
點(diǎn)評(píng) 本題考查了函數(shù)的定義域及其求法,考查了對(duì)數(shù)的運(yùn)算性質(zhì)和一元二次不等式的解法,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
分?jǐn)?shù)段 | [100,110) | [110,120) | [120,130) | [130,140) |
x:y | 1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | -4 | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com