分析 (1)把已知的等式利用正弦定理化簡(jiǎn),根據(jù)sinC不為0,得到一個(gè)關(guān)系式,再利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),利用特殊角的三角函數(shù)值求出A的度數(shù)即可;
(2)由A的度數(shù)求出sinA和cosA的值,由三角形ABC的面積,利用面積公式及sinA的值,求出bc的值,記作①;由a與cosA的值,利用余弦定理列出關(guān)系式,利用完全平方公式變形后,把bc的值代入求出b+c的值,記作②,聯(lián)立①②即可求出b與c的值.
解答 (本題滿(mǎn)分為10分)
解:(1)由正弦定理化簡(jiǎn)已知的等式得:sinCcosA-$\sqrt{3}$sinAsinC+sinC=0,
∵C為三角形的內(nèi)角,∴sinC≠0,
∴$\sqrt{3}$sinA-cosA=1,
整理得:2sin(A-$\frac{π}{6}$)=1,即sin(A-$\frac{π}{6}$)=$\frac{1}{2}$,
∴A-$\frac{π}{6}$=$\frac{π}{6}$或A-$\frac{π}{6}$=$\frac{5π}{6}$,
解得:A=$\frac{π}{3}$或A=π(舍去),
則A=$\frac{π}{3}$;
(2)∵a=2,sinA=$\frac{\sqrt{3}}{2}$,cosA=$\frac{1}{2}$,△ABC的面積為$\sqrt{3}$,
∴$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{4}$bc=$\sqrt{3}$,即bc=4①;
∴由余弦定理a2=b2+c2-2bccosA得:4=b2+c2-bc=(b+c)2-3bc=(b+c)2-12,
整理得:b+c=4②,
聯(lián)立①②解得:b=c=2.
點(diǎn)評(píng) 此題考查了正弦、余弦定理,兩角和與差的正弦函數(shù)公式,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(0{,_{\;}}\frac{1}{2})∪(\frac{2}{3}{,_{\;}}1)∪(1{,_{\;}}+∞)$ | B. | $(-∞{,_{\;}}\frac{1}{2})∪(\frac{2}{3}{,_{\;}}+∞)$ | ||
C. | $(\frac{1}{2}{,_{\;}}\frac{2}{3})$ | D. | $(0{,_{\;}}\frac{1}{2})∪(\frac{2}{3}{,_{\;}}1)∪(1{,_{\;}}\frac{3}{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若m?α,n?β,α∥β,則m∥n | B. | 若m⊥α,m⊥n,n?β,則α∥β | ||
C. | 若m∥n,m⊥α,n⊥β,則α⊥β | D. | 若m∥n,m?α,n⊥β,則α⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
x | $\frac{2}{3}$π | x1 | $\frac{8}{3}$π | x2 | x3 |
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3}{2}$π | 2π |
Asin(ωx+φ) | 0 | 2 | 0 | -2 | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com