分析 由圖象可得函數的解析式為f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},(0≤x≤\frac{1}{2})}\\{-2x+2,(\frac{1}{2}≤x≤1)}\end{array}\right.$,再根據所給的定義解題
解答 解:由圖象可得函數的解析式為f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},(0≤x≤\frac{1}{2})}\\{-2x+2,(\frac{1}{2}≤x≤1)}\end{array}\right.$,
①f1(0)=f(0)=$\frac{1}{2}$,則f2(0)=f(f1(0))=f(f(0))=f($\frac{1}{2}$)=1,f3(0)=f(f2(0))=f(1)=0,
f4(0)=f(f3(0))=f(0)=$\frac{1}{2}$,f5(0)=f(f4(0))=f($\frac{1}{2}$)=1≠0,故0不是函數f(x)的一個5-周期點,①錯誤;
②f1($\frac{1}{2}$)=f($\frac{1}{2}$)=1,則f2($\frac{1}{2}$)=f(f1($\frac{1}{2}$))=f(1)=0,f3($\frac{1}{2}$)=f(f2($\frac{1}{2}$))=f(0)=$\frac{1}{2}$,∴3是點$\frac{1}{2}$的最小正周期,故②正確;
③∵f($\frac{2}{3}$)=-2×$\frac{2}{3}$+2=$\frac{2}{3}$,∴${f_n}(\frac{2}{3})=\frac{2}{3}$;故③正確;
④若x0是f(x)的一個2-周期點,則f2(x0)=f(f1(x0)),若$\frac{1}{2}$<x0≤1,則f1(x0)=-2x0+2∈(1,2],
則f(f1(x0))無意義,故④錯誤;
⑤若x0是f(x)的一個2-周期點,則f2(x0)=x0,∴f2(x0)=f(f1(x0))=f(f(x0))=x0,
∴f2(f(x0))=f(f1(f(x0)))=f(f(f(x0)))=f(x0),
∴f(x0)是f(x)的2-周期點.故⑤正確;
綜上②③⑤正確,
故答案為:②③⑤
點評 本題主要考查新定義的題目,解答的關鍵是讀懂所給的定義,用定義解決.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=±$\sqrt{3}$x | B. | y=±$\sqrt{2}$x | C. | y=±$\frac{\sqrt{2}}{2}$x | D. | y=±$\frac{\sqrt{3}}{3}$x |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [3,+∞) | B. | (-1,3) | C. | [-1,3) | D. | (3,+∞) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com