14.函數(shù)f(x)的定義域為(-2,+∞),部分對應(yīng)值如表,f′(x)為f(x)的導(dǎo)函數(shù),函數(shù)y=f′(x)的圖象如圖所示,若正數(shù)a,b滿足f(2a+b)<1,則$\frac{b+2}{a+2}$的取值范圍是($\frac{1}{2}$,3)
x-104
f(x)1-11

分析 由導(dǎo)數(shù)圖象可知當(dāng)-2<x<0時,f'(x)<0,函數(shù)f(x)單調(diào)遞減,當(dāng)x>0時,f'(x)>0,函數(shù)單調(diào)遞增.利用函數(shù)的單調(diào)性進(jìn)行求解.對于可行域不要求線性目標(biāo)函數(shù)的最值,而$\frac{b+2}{a+2}$ 是求可行域內(nèi)的點與定點(-2,-2)構(gòu)成的直線的斜率問題.由圖象可得結(jié)論

解答 解:由表格可得f(-1)=f(4)=1.
由導(dǎo)數(shù)圖象可知當(dāng)-2<x<0時,f'(x)<0,函數(shù)f(x)單調(diào)遞減,
當(dāng)x>0時,f'(x)>0,函數(shù)單調(diào)遞增.
若正數(shù)a,b滿足f(2a+b)<1,
則f(2a+b)<f(4),
即$\left\{\begin{array}{l}{a>0}\\{b>0}\\{2a+b<4}\end{array}\right.$,作出不等式組對應(yīng)的平面區(qū)域如圖:幾何意義表示為動點Q(a,b)到定點P(-2,-2)點的斜率的取值范圍.
由題意知A(0,4),B(2,0),
所以AP的斜率為$\frac{4-(-2)}{0-(-2)}$=3,
BP的斜率為$\frac{0-(-2)}{2-(-2)}$=$\frac{1}{2}$,
所以則k=$\frac{b+2}{a+2}$的取值范圍是($\frac{1}{2}$,3)
故答案為:($\frac{1}{2}$,3)

點評 本題主要考查了導(dǎo)數(shù)的應(yīng)用,直線的斜率以及簡單的線性規(guī)劃問題,涉及的知識點較多,綜合性較強.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.命題“若a=0,則ab=0”的否命題是( 。
A.若ab=0,則a=0B.若ab=0,則a≠0C.若a≠0,則ab≠0D.若ab≠0,則a≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)是定義在R上的奇函數(shù),且在區(qū)間[0,+∞)上為減函數(shù),若f(1-a)+f(1-2a)<0求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知向量$\overrightarrow m=(\sqrt{3}cos\frac{x}{2},1)$,$\overrightarrow n=(sin\frac{x}{2},-{cos^2}\frac{x}{2})$,設(shè)函數(shù)$f(x)=\frac{1}{2}+\overrightarrow m•\overrightarrow n$.又在△ABC中,角A、B、C的對邊分別是a,b,c,$f(A)=\frac{1}{2}$.
(1)求角A的大。
(2)若a=3,且cos(B-C)+cosA=4sin2C.求c邊的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在矩形ABCD中,AB=2,AD=1,M為DC的中點,將△ADM沿AM折起,使得平面ADM⊥平面ABCM,E為BD中點.

(Ⅰ)求證:CE∥平面AMD;
(Ⅱ)點E在線段DB上,且$\overrightarrow{DE}$=$\overrightarrow{EB}$,求三棱錐M-ADE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法中,不正確的是( 。
A.命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”
B.命題“?x0∈R,${x}_{0}^{2}$-x0>0”的否定是:“?x∈R,x2-x≤0”
C.命題“p或q”為真命題,則命題p和命題q均為真命題
D.“x>3”是“x>2”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,B=2A,∠ACB的平分線CD把△ABC的面積分成3:2兩部分,則cosA等于( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一個焦點作一直線交橢圓于E,F(xiàn)兩點,線段|EF|長的最大值與最小值分別是$4\sqrt{2},2\sqrt{2}$.
(1)求橢圓的方程;
(2)與圓(x-1)2+y2=1相切的直線l:y=kx+1與橢圓交于M,N兩點,若橢圓上一點C滿足$\overrightarrow{OM}+\overrightarrow{ON}=λ\overrightarrow{OC}$,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx-ax+$\frac{1-a}{x}$-1(a∈R)
(1)當(dāng)0≤a<$\frac{1}{2}$時,討論f(x)的單調(diào)性;
(2)設(shè)g(x)=x2-2bx+4,當(dāng)a=$\frac{1}{4}$時,
(i)若對任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求實數(shù)b取值范圍;
(ii)對于任意x1,x2∈(1,2]都有|f(x1)-f(x2)|≤λ|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案