3.直線2x+y+3=0在y軸上的截距是( 。
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.3D.-3

分析 通過x=0求出y的值,即可得到結(jié)果.

解答 解:直線2x+y+3=0,當(dāng)x=0時(shí),y=-3,
直線2x+y+3=0在y軸上的截距為:-3.
故選:D.

點(diǎn)評 本題考查直線方程的應(yīng)用,直線的截距的求法,基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)全集U=R,集合A={x|log2x≤2},$B=\left\{{x|\frac{4}{3-x}≥1}\right\}$,則A∩B=( 。
A.[-1,3)B.(-∞,-1]∪(3,4]C.(0,3]D.(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖,在平面直角坐標(biāo)系中,直線AB交x、y軸于點(diǎn)A(10$\sqrt{3}$,0),B(0,-30),一圓心位于(0,3),半徑為3的動(dòng)圓沿x軸向右滾動(dòng),動(dòng)圓每6秒滾動(dòng)一圈,則動(dòng)圓與直線AB第一次相切時(shí)所用的時(shí)間為$\frac{9\sqrt{3}}{π}$ 秒.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(2,-1),若(k$\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow{a}$-2$\overrightarrow$),則k=( 。
A.3B.2C.-3D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)g(x)=x(x2-1),則g(x)在區(qū)間[0,1]上的最小值為(  )
A.-1B.0C.-$\frac{2\sqrt{3}}{9}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.矩形ABCD的兩條邊AB和AD所在直線的方程分別是x-2y+4=0和2x+y-7=0,它的對角線的交點(diǎn)M的坐標(biāo)是(-1,1),求邊BC和邊CD所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知平面α的一個(gè)法向量$\overrightarrow n=(0,-\frac{1}{2},-\sqrt{2})$,A∈α,P∉α,且$\overrightarrow{PA}=(-\frac{{\sqrt{3}}}{2},\frac{1}{2},\sqrt{2})$,則直線PA與平面α所成的角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=sin(2x-$\frac{π}{6}$)-1.
(1)求函數(shù)f(x)的最小正周期和最小值;
(2)設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且c=$\sqrt{3}$,f(C)=0,sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知集合A={x|x2-5x+6<0},B={x|1-a<x<3+a}.若“x∈A”是“x∈B”的充分不必要條件,則實(shí)數(shù)a的取值范圍為[0,+∞).

查看答案和解析>>

同步練習(xí)冊答案