如圖,⊙O′和⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延長(zhǎng)線于N,MN=3,NQ=15,求PN的長(zhǎng).
考點(diǎn):與圓有關(guān)的比例線段
專題:立體幾何
分析:由切割線定理得NM•NQ=NB•NA=NP2,由此能求出PN的長(zhǎng).
解答: 解:∵⊙O′和⊙O相交于A和B,
PQ切⊙O于P,交⊙O′于Q和M,
交AB的延長(zhǎng)線于N,MN=3,NQ=15,
∴NM•NQ=NB•NA=NP2,
∴NP=
NM•NQ
=
3×15
=3
5

∴PN的長(zhǎng)為3
5
點(diǎn)評(píng):本題考查與圓有關(guān)的線段落的長(zhǎng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意切割線定理的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x+1|+|x-a|
(Ⅰ)若a=3,解不等式f(x)≥6;
(Ⅱ)若不等式f(x)≥6對(duì)任意的實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-3|.
(1)若不等式f(x-1)+f(x)<a的解集為空集,求a的范圍;
(2)若|a|<1,|b|<1,且a≠0,求證:f(ab)>|a|f(
b
a
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式mx2+(m-1)x-1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
sin
ωx
2
,a),
n
=(acos
ωx
2
,cos2
ωx
2
)且a>0,f(x)=
m
n
.函數(shù)f(x)的圖象過最大值點(diǎn)(x0,3)及相鄰的最小值點(diǎn)(x0+π,-1).
(1)求f(x)的解析式;
(2)若α∈(-
π
2
,
π
2
)且f(α)=
3
2
,求
cos(α+
π
6
)
sinα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-3,3]上隨機(jī)取一個(gè)數(shù)x,使得|x-2|≤2成立的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1+x)2n(n∈N*)的展開式中,系數(shù)最大的項(xiàng)是第
 
項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=|2-x|+|x-1|的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案