19.若A=$\frac{π}{3}$,B∈(0,$\frac{π}{3}$),且cos(A-B)=$\frac{4}{5}$,則sinB=$\frac{4\sqrt{3}-3}{10}$.

分析 由已知利用sinB=sin[A-(A-B)]能求出sinB.

解答 解:∵A=$\frac{π}{3}$,B∈(0,$\frac{π}{3}$),且cos(A-B)=$\frac{4}{5}$,
∴A-B∈(0,$\frac{π}{3}$),sin(A-B)=$\frac{3}{5}$,
∴sinB=sin[A-(A-B)]
=sinAcos(A-B)-cosAsin(A-B)
=sin$\frac{π}{3}$$•\frac{4}{5}$-cos$\frac{π}{3}$$•\frac{3}{5}$
=$\frac{\sqrt{3}}{2}•\frac{4}{5}-\frac{1}{2}•\frac{3}{5}$
=$\frac{4\sqrt{3}-3}{10}$.
故答案為:$\frac{4\sqrt{3}-3}{10}$.

點評 本題考查角的正弦值的求法,是中檔題,解題時要認真審題,注意同角三角函數(shù)關系、余弦加法定理的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知斜率為k的直線l經(jīng)過點A(0,2),圓C:(x-2)2+(y-3)2=1,直線1與圓C相交于M.N兩點.
(1)證明:$\overrightarrow{AM}$•$\overrightarrow{AN}$為定值;
(2)若$\overrightarrow{AM}$=λ$\overrightarrow{AN}$,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在△ABC在,角A,B,C的對邊分別為a,b,c,已知cosC=$\frac{1}{3}$,sinA=$\sqrt{2}$cosB.
(1)求tanB的值;
(2)若△ABC的面積S為$\frac{5\sqrt{2}}{4}$,求c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知圓x2+y2-2x-3=0與坐標軸相交.求:①交點坐標;②以交點為頂點的四邊形面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}$$+\overrightarrow+\overrightarrow{c}$=$\overrightarrow{0}$,且$\overrightarrow{a}$與$\overrightarrow$的夾角的正切為-$\frac{1}{2}$,$\overrightarrow$與$\overrightarrow{c}$的夾角的正切為-$\frac{1}{3}$,|$\overrightarrow$|=2,則$\overrightarrow{a}$•$\overrightarrow{c}$的值為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.$\sqrt{1-2sin(π+2)cos(π-2)}$等于( 。
A.sin2-cos2B.sin2+cos2C.±(sin2-cos2)D.cos2-sin2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.方程sinx-$\sqrt{3}$cosx=1-2a有解,則實數(shù)a的取值范圍為[-$\frac{1}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)f(x)是定義域在R上的偶函數(shù),且f(x)=-f(2-x),若f(x)在區(qū)間[1,2]上是減函數(shù),則f(x)( 。
A.在區(qū)間[-2,-1]上是增函數(shù),在區(qū)間[3,4]上是增函數(shù)
B.在區(qū)間[-2,-1]上是增函數(shù),在區(qū)間[3,4]上是減函數(shù)
C.在區(qū)間[-2,-1]上是減函數(shù),在區(qū)間[3,4]上是增函數(shù)
D.在區(qū)間[-2,-1]上是減函數(shù),在區(qū)間[3,4]上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若函數(shù)$f(x)={log_{\frac{1}{3}}}({3{x^2}-ax+5})$在[-1,+∞)上單調遞減,則a的取值范圍是(  )
A.(-∞,-6]B.[-8,-6)C.(-8,-6]D.[-8,-6]

查看答案和解析>>

同步練習冊答案