已知函數(shù)f(x)=
lnx
x

(1)求f(x)在點(diǎn)(1,0)處的切線方程;
(2)求f(x)在[1,e2]上的最值.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求導(dǎo)數(shù),可得切線的斜率,從而可得f(x)在點(diǎn)(1,0)處的切線方程;
(2)確定f(x)在[1,e2]上的單調(diào)性,即可最值.
解答: 解:(1)∵f(x)=
lnx
x
,
∴f′(x)=
1-lnx
x2

∴f′(1)=1,
∴f(x)在點(diǎn)(1,0)處的切線方程為y=x-1;
(2)∵函數(shù)在(1,e)上單調(diào)遞增,在(1,e2)上單調(diào)遞減,
∴x=e時(shí),函數(shù)取得最大值
1
e

∴x=1時(shí),f(1)=0,f(e2)=
2
e2

∴f(x)在[1,e2]上的最小值為0.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,正確求導(dǎo)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中不正確的是( 。
A、存在這樣的α和β的值,使得cos(α+β)=cosαcosβ+sinαsinβ
B、不存在無窮多個(gè)α和β的值,使得cos(α+β)=cosαcosβ+sinαsinβ
C、對(duì)于任意的α和β,都有cos(α+β)=cosαcosβ-sinαsinβ
D、不存在這樣的α和β值,使得cos(α+β)≠cosαcosβ-sinαsinβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)A(2,1),離心率e=
3
2

(1)求橢圓方程;
(2)過直線y=2上的點(diǎn)P作橢圓的兩條切線,切點(diǎn)分別為B,C
①求證:直線BC過定點(diǎn);
②求△OBC面積的最大值;
參考公式:過橢圓
x2
a2
+
y2
b2
=1上點(diǎn)(x0,y0)的切線方程為
x0x
a2
+
y0y
b2
=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
2
2
,右頂點(diǎn)為拋物線y2=8x的焦點(diǎn).
(1)求橢圓C的方程;
(2)若過點(diǎn)M(1,0)任作一條直線l交橢圓C于A、B兩點(diǎn),Q(4,0),連接QA,QB,求證:∠AQM=∠BQM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
3
ax3+(a-1)bx2-2x+1,a∈R.
(1)當(dāng)b=1時(shí),討論函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若a=2且函數(shù)y=f(x)在(1,2)上存在增區(qū)間,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx-
m-1
x
-lnx,m∈R,函數(shù)g(x)=
1
cosθ•x
+lnx在[1,+∞)上為增函數(shù),且θ∈[0,
π
2
).
(1)求θ的取值范圍;c
(2)若h(x)=f(x)-g(x)在[1,+∞)上為單調(diào)函數(shù),求m的取值范圍;
(3)若在[1,e]上至少存在一個(gè)x0,使得h(x0)>
2e
x0
成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知圓O:x2+y2=1與x軸交于A、B兩點(diǎn),與y軸的正半軸交于點(diǎn)C,M是圓O上任意點(diǎn)(除去圓O與兩坐標(biāo)軸的交點(diǎn)).直線AM與直線BC交于點(diǎn)P,直線CM與x軸交于點(diǎn)N,設(shè)直線PM、PN的斜率分別為m、n.
(Ⅰ)求直線BC的方程;
(Ⅱ)求點(diǎn)P、M的坐標(biāo)(用m表示);
(Ⅲ)是否存在一個(gè)實(shí)數(shù)λ,使得m+λn為定值,若存在求出λ,并求出這個(gè)定值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+ax-
1
4
a-
1
2
,
(1)若函數(shù)f(x)的值域?yàn)椋?∞,0],求實(shí)數(shù)a的值;
(2)當(dāng)x∈[0,1]時(shí),函數(shù)f(x)的最大值為2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x-3
(1)指出圖象開口方向、對(duì)稱軸方程、頂點(diǎn)坐標(biāo);
(2)畫出函數(shù)圖象,并說明圖象是由f(x)=x2經(jīng)過怎樣的平移得到;
(3)求f(2)、f(
1
x
);
(4)判斷函數(shù)f(x)在(-∞,-1)上的單調(diào)性,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案