6.如圖,一條直線上有三點(diǎn)A,B,C,點(diǎn)C在點(diǎn)A與點(diǎn)B之間,點(diǎn)P是此直線外一點(diǎn),設(shè)∠APC=α,∠BPC=β.求證:$\frac{sin(α+β)}{PC}=\frac{sinα}{PB}+\frac{sinβ}{PA}$.

分析 過點(diǎn)C作CE∥PA,交PB于點(diǎn)E,利用兩直線平行內(nèi)錯(cuò)角相等得到∠PCE=∠APC,∠PEC=π-(α+β),利用正弦定理列出關(guān)系式,再結(jié)合比例性質(zhì),即可證明結(jié)論.

解答 證明:過點(diǎn)C作CE∥PA,交PB于點(diǎn)E,則∠PCE=α,∠PEC=π-(α+β),
則在△PCE中,由正弦定理得:$\frac{sin∠PEC}{PC}$=$\frac{sin∠PCE}{PE}$=$\frac{sin∠BPC}{CE}$,
即$\frac{sin[π-(α+β)]}{PC}$=$\frac{sinα}{PE}$=$\frac{sinβ}{CE}$,
∴$\frac{sin(α+β)}{PC}$=$\frac{PA•sinα}{PA•PE}$=$\frac{PB•sinβ}{PB•CE}$,
利用比例性質(zhì),有:$\frac{sin(α+β)}{PC}$=$\frac{PAsinα+PBsinβ}{PA•PE+PB•CE}$,
∵CE∥PA,
∴CE:PA=BE:PB,
∴PA•PE+PB•CE=PA•PE+PA•BE=PA•(PE+BE)=PA•PB,
則$\frac{sin(α+β)}{PC}$=$\frac{sinα}{PB}$+$\frac{sinβ}{PA}$.

點(diǎn)評(píng) 本題考查正弦定理,比例的性質(zhì),以及誘導(dǎo)公式的作用,熟練掌握正弦定理是解本題的關(guān)鍵..

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.4男3女排成一排,求滿足下列條件的排列方法數(shù):
(1)女生互不相鄰;
(2)男生都排在一起;
(3)男生中A與B不相鄰,C與D要相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知拋物線C1的頂點(diǎn)是雙曲線C2:x2-4ky2=4的中心,而焦點(diǎn)是雙曲線的左頂點(diǎn),
(1)當(dāng)k=1時(shí),求拋物線C1的方程;
(2)若雙曲線的離心率e=$\frac{{\sqrt{6}}}{2}$,求雙曲線的漸近線方程和準(zhǔn)線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.是否存在同時(shí)滿足下列兩條件的直線l:
(1)l與拋物線y2=8x有兩個(gè)不同的交點(diǎn)A和B;
(2)線段AB被直線l1:x+5y-5=0垂直平分.若不存在,說明理由,若存在,求出直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)拋物線y2=4x上一點(diǎn)P到直線x=-2的距離為5,則點(diǎn)P到該拋物線焦點(diǎn)的距離是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知A、B兩監(jiān)測點(diǎn)間距離為3400米,且兩點(diǎn)到同一爆炸聲的時(shí)間差為6s,且B處的聲強(qiáng)是A處聲強(qiáng)的4倍,聲強(qiáng)與距離的平方成反比,求爆炸點(diǎn)P到兩監(jiān)測點(diǎn)中點(diǎn)Q的距離(精確到1m,聲速為340m/s).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知數(shù)列{an}的各項(xiàng)均為正數(shù),它的前n項(xiàng)和為Sn,滿足:Sn=$\frac{1}{6}$(an+1)(an+2),且a2,a4,a9,成等比數(shù)列,數(shù)列{an}通項(xiàng)公式為an=3n-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)a>1,橢圓$\frac{{x}^{2}}{{a}^{2}}$+y2=1與雙曲線$\frac{{x}^{2}}{{a}^{2}-1}$-y2=1的四個(gè)交點(diǎn)構(gòu)成一個(gè)正方形,它們的離心率分別為e1,e2,求${{e}_{1}}^{2}$+${{e}_{2}}^{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.觀察下面數(shù)列的變化規(guī)律,寫出的第10項(xiàng)$\frac{1}{21×23}$.
-$\frac{1}{3×5}$,$\frac{1}{5×7}$,-$\frac{1}{7×9}$,$\frac{1}{9×11}$,…

查看答案和解析>>

同步練習(xí)冊(cè)答案