3.已知數(shù)列{an}滿足anan+1=(-1)n(n∈N*),a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,則S2015=-1.

分析 由數(shù)列{an}滿足${a_n}{a_{n+1}}={(-1)^n}(n∈{N^*})$,a1=1,可得a4k-3=1,a4k-2=-1,a4k-1=-1,a4k=1,k∈N*.即可得出.

解答 解:∵數(shù)列{an}滿足${a_n}{a_{n+1}}={(-1)^n}(n∈{N^*})$,a1=1,
∴a2=-1,a3=-1,a4=1,a5=1…,
∴a4k-3=1,a4k-2=-1,a4k-1=-1,a4k=1,k∈N*.即數(shù)列各項(xiàng)的值呈周期性出現(xiàn)
∴S2015=503×(1-1-1+1)+(1-1-1)=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查了遞推關(guān)系的應(yīng)用,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{{x}^{2}+(a+1)x+a}{{x}^{2}}$為偶函數(shù).
(1)求實(shí)數(shù)a的值;
(2)記集合A={y|y=f(x),x∈{1,-2,3}},p=(lg2)2+lg2lg5+lg5+$\frac{1}{4}$,判斷p與集合A的關(guān)系;
(3)當(dāng)x∈[m,n](m>0,n>0)時(shí),若函數(shù)f(x)的值域?yàn)閇-$\frac{2}{m}$+2,-$\frac{n}{8}$+1],求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=sinx-x在區(qū)間[0,2π]上的最小值為( 。
A.B.1-$\frac{π}{2}$C.0D.-2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若存在x∈(0,+∞),使不等式ax+3a-1<e-x成立,則實(shí)數(shù)a的取值范圍為( 。
A.{a|0<a<$\frac{1}{3}$}B.{a|a<$\frac{2}{3}$}C.{a|a<$\frac{2}{e+1}$}D.{a|a<$\frac{1}{3}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知正四棱錐底面邊長為$4\sqrt{2}$,體積為32,則此四棱錐的側(cè)棱長為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)p:實(shí)數(shù)x滿足x2-4ax+3a2<0,其中a>0,命題q:實(shí)數(shù)x滿足|x-3|<1.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍.
(2)若q是p的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.不等式($\frac{1}{3}$-x)($\frac{1}{2}$+x)<0的解集為( 。
A.(-∞,-$\frac{1}{2}$)∪($\frac{1}{3}$,+∞)B.(-$\frac{1}{2}$,$\frac{1}{3}$)C.(-∞,-$\frac{1}{3}$)∪($\frac{1}{2}$,+∞)D.(-$\frac{1}{3}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若復(fù)數(shù)$z=\frac{3-ai}{i}$(其中i為虛數(shù)單位,a∈R)的實(shí)部和虛部相等,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某工廠從1970年的年產(chǎn)值100萬元增加到2010年的500萬元,如果每年的年產(chǎn)值增長率相同,則每年的年產(chǎn)值增長率是多少?(ln(1+x)≈x,取lg2=0.3,ln10=2.3)

查看答案和解析>>

同步練習(xí)冊(cè)答案