分析 利用正弦定理,把等式中的邊化為角,再結(jié)合兩角和的余弦公式進(jìn)行化簡,即可得出結(jié)論.
解答 解:由正弦定理$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$=k(k≠0),
原式可化為:
2k2sin2Bsin2C=2k2sinBsinCcosBcosC,
∵sinBsinC≠0,
∴sinBsinC=cosBcosC,
即cos(B+C)=0,
∴B+C=90°,A=90°,
∴△ABC為直角三角形.
故答案為:直角三角形.
點(diǎn)評 本題考查了正弦定理的應(yīng)用問題,也考查了三角恒等變換的應(yīng)用問題,是基礎(chǔ)題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-$\sqrt{2}$-1,$\sqrt{2}$-1} | B. | {-$\sqrt{2}$+1,$\sqrt{2}$+1} | C. | [-2,0] | D. | (0,2]∪{1-$\sqrt{2}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3\sqrt{2}-\sqrt{3}}{6}$ | B. | $\frac{3\sqrt{2}+\sqrt{3}}{6}$ | C. | $\frac{-3\sqrt{2}+\sqrt{3}}{6}$ | D. | $\frac{-3\sqrt{2}-\sqrt{3}}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com