分析 (1)利用實數(shù)方程求解實數(shù)a的值即可;
(2)直接利用分段函數(shù)由里及外逐步求解f(f(-2));
(3)若f(m)=3,求m的值
解答 解:(1)函數(shù)f(x)=$\left\{{\begin{array}{l}{3x+2,x<1}\\{{x^2}+ax,x≥1}\end{array}}$,且f(f(0))=4a.
可得f(2)=4+2a=4a,
可得實數(shù)a的值為2;
(2)f(f(-2))=f(-4)=-12+2=-10;
(3)當m<1時,f(m)=3,可得3m+2=3,可得m=$\frac{1}{3}$.
m≥1,可得:m2+2m=3,解得m=1,m=-3(舍去).
m的值為:1或$\frac{1}{3}$.
點評 本題考查分段函數(shù)的應(yīng)用,考查函數(shù)與方程的綜合應(yīng)用,考查計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,2) | B. | (-2,-2) | C. | (2,2)或(-2,-2) | D. | (2$\sqrt{2}$,2$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | S=S+$\frac{i+1}{i}$,i≥100? | B. | S=S+$\frac{i+1}{i}$,i≥101? | C. | S=S+$\frac{i}{i-1}$,i≥100? | D. | S=S+$\frac{i}{i-1}$,i≥101? |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | r=1;(-2,1) | B. | r=2;(-2,1) | C. | r=1;(2,-1) | D. | r=2;(2,-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | i | B. | -1+i | C. | 1+i | D. | 1-i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com