分析 設P(x,y),則滿足(x-3)2+y2≤4,∴動點P在圓M:(x-3)2+y2=4上及內(nèi)部,當AP與圓M相切時,sin∠ACB最大,由此能求出sin∠ACB的最大值.
解答 解:設P(x,y),∵點A(-1,0),B(2,0),動點P滿足|$\overrightarrow{PA}$|≥2|$\overrightarrow{PB}$|,
|$\overrightarrow{PA}$|=$\sqrt{(x+1)^{2}+{y}^{2}}≥2\sqrt{(x-2)^{2}+{y}^{2}}$,
∴滿足(x-3)2+y2≤4,
∴動點P在圓M:(x-3)2+y2=4上及內(nèi)部,
當AP與圓M相切時,sin∠ACB最大,
此時AP:y=$\frac{\sqrt{3}}{3}$(x+1),點C(0,$\frac{\sqrt{3}}{3}$),∠ACO=60°,tan$∠OCB=2\sqrt{3}$,
tan$∠ACB=\frac{\sqrt{3}+2\sqrt{3}}{1-\sqrt{3}•2\sqrt{3}}$=-$\frac{3\sqrt{3}}{5}$,
∴sin∠ACB=$\frac{3\sqrt{39}}{26}$.
故答案為:$\frac{3\sqrt{39}}{26}$.
點評 本題考查角的正弦值的最大值的求法,是中檔題,解題時要認真審題,注意圓的性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | ±$\sqrt{3}$ | C. | ±$\frac{\sqrt{3}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 64 | B. | $4\sqrt{15}$ | C. | 8 | D. | 4$\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com