A. | $\frac{\sqrt{3}}{3}$ | B. | ±$\sqrt{3}$ | C. | ±$\frac{\sqrt{3}}{3}$ | D. | $\sqrt{3}$ |
分析 當(dāng)△AOB面積取最大值時,OA⊥OB,圓心O(0,0)到直線直線l的距離為1,由此能求出直線l的斜率.
解答 解:當(dāng)△AOB面積取最大值時,OA⊥OB,
∵圓x2+y2=2相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),
∴圓心O(0,0),半徑r=$\sqrt{2}$,
∴OA=OB=$\sqrt{2}$,AB=$\sqrt{2+2}$=2,
∴圓心O(0,0)到直線直線l的距離為1,
當(dāng)直線l的斜率不存在時,直線l的方程為x=2,不合題意;
當(dāng)直線l的斜率存在時,直線l的方程為y=k(x-2),
圓心(0,0)到直線l的距離d=$\frac{|-2k|}{\sqrt{{k}^{2}+1}}$=1,
解得k=$±\frac{\sqrt{3}}{3}$.
故選:C.
點(diǎn)評 本題主要考查了直線與圓的位置關(guān)系及其三角形面積的計算,屬于中檔試題,著重考查了數(shù)形結(jié)合思想及轉(zhuǎn)化與化歸思想的應(yīng)用,在與圓有關(guān)的問題解答中,特別注意借助圖形轉(zhuǎn)化為與圓心的關(guān)系,是解答的一種常見方法,本題的解答當(dāng)△AOB面積取最大值時,OA⊥OB,此時圓心O到直線的距離為1是解答本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25π | B. | 36π | C. | 49π | D. | 32π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0或1 | B. | 0或-1 | C. | 1或-1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | [$\frac{1}{5}$,1] | C. | (1,+∞)∪(-∞,$\frac{1}{5}$) | D. | R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com