分析 先根據(jù)條件求出f'(2)的值,然后根據(jù)f(x)是可導(dǎo)的偶函數(shù)求出f'(-2)的值,最后根據(jù)點(diǎn)斜式求出切線方程即可.→
解答 解:∵$\underset{lim}{x→0}$$\frac{f(2)-f(2-x)}{3x}$=-2,
∴f'(2)=$\underset{lim}{x→0}\frac{f(2)-f(2-x)}{x}$=-6
∵f(x)是可導(dǎo)的奇函數(shù),
∴f'(-2)=6
又f(-2)=3,
∴曲線y=f(x)在(-2,3)處的切線方程是y-3=6(x+2)即y=6x+15
故答案為:y=6x+15.
點(diǎn)評(píng) 本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及導(dǎo)數(shù)的幾何意義和函數(shù)奇偶性的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2+x}{\sqrt{{x}^{2}+1}(2x-1)^{2}}$ | B. | -$\frac{x+2}{\sqrt{{x}^{2}+1}(2x-1)^{2}}$ | ||
C. | $\frac{4{x}^{2}-x+2}{(2x-1)^{2}}$ | D. | $\frac{4{x}^{2}-x+2}{(2x-1)^{2}\sqrt{{x}^{2}+1}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (-∞,2) | C. | (-∞,2] | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{5}{2}$ | D. | $\frac{7}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com