分析 (Ⅰ)(圖2)給出了該三棱柱三視圖中的正視圖,根據(jù)直觀圖可得側(cè)視圖;
(Ⅱ)求連接A1C交A1C于A1C點,連接A1C,則A1C為A1C的中點,證明A1C∥A1C,即可證明A1C∥平面AB1D;
(Ⅲ)求出點P到平面AB1D的距離等于點C到平面AB1D的距離,利用等體積轉(zhuǎn)化,即可求三棱錐P-AB1D的體積.
解答 解:(Ⅰ)該三棱柱的左視圖如下
…(3分)
證明:(Ⅱ)連接A1C交A1C于A1C點,連接A1C,則A1C為A1C的中點.
又∵A1C為A1C的中點,
∴A1C是A1C的中位線.
∴A1C∥A1C.…(5分)
∵AB1D平面AB1D,AB1D平面AB1D,
∴A1C∥平面AB1D.…(7分)
解:(Ⅲ)∵AA1⊥底面ABC,且CC1=AB=AC=2,∠BAC=90°.
∴AD⊥BC,且$AD=\sqrt{2},DC=\sqrt{2}$,故${S_{△ACD}}=\frac{1}{2}AD•DC=1$.…(8分)
又∵點P是線段A1C上的動點,由(Ⅱ)可知A1C∥平面AB1D,
故點P到平面AB1D的距離等于點C到平面AB1D的距離.…(9分)
∴${V_{P-A{B_1}D}}={V_{C-A{B_1}D}}={V_{{B_1}-ACD}}$.…(11分)
又∵BB1⊥面ABC,
∴$\frac{1}{3}{S_{△ACD}}•B{B_1}$═$\frac{1}{3}{S_{△ACD}}•B{B_1}$=$\frac{1}{3}×1×2$=$\frac{2}{3}$.
即三棱錐P-AB1D的體積為$\frac{2}{3}$.…(12分)
點評 本題考查的是三視圖,考查線面平行的判定,考查三棱錐體積的計算,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{5}{2}$ | B. | -$\frac{2}{5}$ | C. | $\frac{2}{5}$ | D. | $±\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y2=2x | B. | y2=3x | C. | y2=4x | D. | y2=6x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,$\sqrt{3}$) | B. | (1,$\sqrt{5}$) | C. | ($\sqrt{3}$,+∞) | D. | ($\sqrt{5}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com